首页> 外文期刊>The Journal of Chemical Physics >Translocation of a polymer chain across a nanopore:A Brownian dynamics simulation study
【24h】

Translocation of a polymer chain across a nanopore:A Brownian dynamics simulation study

机译:聚合物链在纳米孔中的移位:布朗动力学模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

We carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient).The translocation process can be either dominated by the entropic barrier resulteed from restricted motion of flexible polymer chains or by applied forces (or chemical gradient across the wall),we focused on the latter case in our studies.Caclulation of radius of gyrations at the two opoosite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process.Despite this fact,our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients,the polymer chain length and the solvent viscosity.In good agreement with experimental results and rtheoretical predictions,the translocation time distribution of our simple model shows strong non-Gaussian charactristics.It is observged that even for this simple tubelike pore geometry,more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths.Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied,attraction facilitates the translocation process by shortening the total translocation time distribution was found to decrease with increasing temperature,increasing field strength,and decreasing pore diameter.
机译:我们进行了布朗动力学模拟研究,研究了单个聚合物链在外加电场(化学势梯度)的驱动下跨纳米孔的移位。移位过程可以由柔性聚合物链运动受限引起的熵垒主导。或通过施加的力(或壁上的化学梯度),我们在研究中将重点放在后一种情况。壁的两个相反侧面的回转半径的计算表明,聚合物链在移位过程中不处于平衡状态。尽管如此,我们的结果表明,一维扩散和成核模型很好地描述了平均移位时间对化学势梯度,聚合物链长和溶剂粘度的依赖性。与实验结果和理论预测,我们简单模型的移位时间分布显示出很强的非高斯观察到,即使对于这种简单的管状孔几何形状,对于适当的孔径和所施加的场强,也可以产生一个以上的移位时间分布峰。进行了相互作用研究,发现吸引力随着温度的升高,场强的增加和孔径的减小而缩短了总的易位时间,从而促进了易位过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号