首页> 外文学位 >Brownian dynamics simulation of dilute polymer chains.
【24h】

Brownian dynamics simulation of dilute polymer chains.

机译:稀聚合物链的布朗动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Local motion of polymers is extremely important while studying the behavior of single strand DNA in DNA unzipping and replication, understanding rheological properties of polymers in confined in narrow gaps for head-disk interface design for hard disk drives, and designing membrane structure for small molecule permeation through a dense polymeric membrane. So, in order to understand the mechanism of energy dissipation of dilute polymer solutions at high frequencies, I carry out a Brownian dynamics study of a linear bead-spring chain in which the beads represent individual backbone atoms, a stiff Fraenkel spring potential maintains the distance between atoms near 1.53 A, a bending potential maintains tetrahedral bonding angles, a torsional potential imposes realistic barriers to torsional transitions, and white noise represents the Brownian force from the solvent. With this model, I find that the end-to-end vector autocorrelation function from the simulation is in excellent agreement with the theoretical Rouse model predictions. Nevertheless, the autocorrelation function of the bond orientation vectors---which delineates the relaxation of the stress tensor---exhibits a much slower decay then predicted by the coarse-grain Rouse theory except near the longest relaxation time even for chains with as many as 50 bonds. I find that both the bending and torsional potentials slow down the contributions of local relaxation modes, bringing the relaxation of short chains (less than 50 bonds) closer to single exponential behavior than to the Rouse spectrum, in qualitative agreement with observations of birefringence relaxation [Lodge et al. (1982) J. Poly. Sci. 20, 1409]. Also, my normal mode predictions using the bead-spring model provides an excellent fit to data for 2400 and 6700 base single-strand DNA molecules [Shusterman et al. (2004) Phy. Rev. Lett. 92(4), 048303] and the fit yields 12 Kuhn steps per spring and a value of 0.12 for the standard hydrodynamic interaction parameter---very close to the values typical of conventional polymers such as polystyrene. Thus, my results are generally in agreement with a recent notion of a "dynamical Kuhn length" in which torsional barriers to chain motion, can suppress high frequency contribution to viscoelasticity [Larson (2004) Macromol. 37, 5110].
机译:在研究单链DNA在DNA解链和复制中的行为,了解用于狭窄空间的聚合物的流变特性(用于硬盘驱动器的磁盘设计)以及设计用于小分子渗透的膜结构时,聚合物的局部运动极为重要。通过致密的聚合物膜。因此,为了了解稀聚合物溶液在高频下的能量耗散机理,我对线性磁珠-弹簧链进行了布朗动力学研究,该链中的磁珠代表单个主链原子,刚性的弗朗克尔弹簧势保持了距离在接近1.53 A的原子之间,弯曲电位保持四面体键合角度,扭转电位对扭转过渡施加现实的障碍,白噪声代表来自溶剂的布朗力。通过这个模型,我发现仿真中的端到端矢量自相关函数与Rouse模型的理论预测非常吻合。尽管如此,键取向矢量的自相关函数-描绘了应力张量的弛豫-表现出比粗粒度Rouse理论所预测的慢得多的衰减,除了在最长弛豫时间附近,即使对于具有多达作为50个债券。我发现弯曲和扭转势均会减慢局部弛豫模式的作用,从而使短链(少于50个键)的弛豫更接近单指数行为而不是Rouse谱,这与双折射弛豫的观察在质量上是一致的[ Lodge等。 (1982)J. Poly。科学1409年第20期]。另外,我使用珠-弹簧模型的正常模式预测也非常适合2400和6700个碱基的单链DNA分子的数据[Shusterman等。 (2004)Phy。牧师92(4),048303],并且每个弹簧的拟合产生12 Kuhn阶跃,并且标准流体动力相互作用参数的值为0.12-非常接近于常规聚合物(如聚苯乙烯)的典型值。因此,我的结果与最近的“动态库恩长度”概念相吻合,其中链运动的扭转壁垒可以抑制高频对粘弹性的贡献[Larson(2004)Macromol。 37,5110]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号