...
首页> 外文期刊>Physics of plasmas >Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor
【24h】

Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

机译:微波脉冲压缩机中等离子体放电和电磁场的自洽演变

获取原文
获取原文并翻译 | 示例
           

摘要

Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed. (C) 2015 AIP Publishing LLC.
机译:使用代码MAGIC数值研究了具有等离子干扰开关的微波脉冲压缩机释放能量期间,等离子和RF电磁场的纳秒尺度演变。在MAGIC的气体电导率模型范围内模拟了等离子体。该压缩机具有一个S形腔和一个H形波导T形管,其T形短臂充满了压缩气体。在一种简化的方法中,通过在电场波腹的位置与侧臂波导交叉的层中设置外部电离速率来启动气体放电。发现随着电离速率的增加,等离子体在最初的几纳秒内吸收的微波能量会增加,但是相反,在整个能量释放期间的吸收会降低。在模拟放电的激光点火的混合方法中,在电场波腹附近设置了种子电子。在这种情况下,等离子体沿着形成细丝的场延伸,并且等离子体密度增加到由于趋肤效应导致等离子体内的电场降低的水平。然后,雪崩速率降低,但是密度仍然增加,直到开始释放微波能量并且电场变得不足以支持雪崩过程为止。微波脉冲的提取通过终止等离子体密度和灯丝长度的上升来限制自身的功率。为了有效提取,足够长的致密血浆丝必须具有足够的时间才能形成。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号