...
首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Domain-wall melting in ultracold-boson systems with hole and spin-flip defects
【24h】

Domain-wall melting in ultracold-boson systems with hole and spin-flip defects

机译:具有孔和自旋翻转缺陷的超冷玻色子系统中的畴壁熔化

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum magnetism is a fundamental phenomenon of nature. As of late,it has garnered a lot of interest because experiments with ultracold atomic gases in optical lattices could be used as a simulator for phenomena of magnetic systems. A paradigmatic example is the time evolution of a domain-wall state of a spin-1/2 Heisenberg chain, the so-called domain-wall melting. The model can be implemented by having two species of bosonic atoms with unity filling and strong on-site repulsion U in an optical lattice. In this paper, we study the domain-wall melting in such a setup on the basis of the time-dependent density matrix renormalization group (tDMRG). We are particularly interested in the effects of defects that originate from an imperfect preparation of the initial state. Typical defects are holes (empty sites) and flipped spins. We show that the dominating effects of holes on observables like the spatially resolved magnetization can be taken account of by a linear combination of spatially shifted observables from the clean case. For sufficiently large U, further effects due to holes become negligible. In contrast, the effects of spin flips are more severe as their dynamics occur on the same time scale as that of the domain-wall melting itself. It is hence advisable to avoid preparation schemes that are based on spin flips.
机译:量子磁性是自然界的基本现象。最近,它引起了很多兴趣,因为在光学晶格中使用超冷原子气体进行的实验可以用作磁系统现象的仿真器。一个典型的例子是自旋1/2海森堡链的畴壁状态随时间的演变,即所谓的畴壁熔化。该模型可以通过在光学晶格中具有两种具有统一填充和强现场排斥力的Bosonic原子来实现。在本文中,我们在时间依赖的密度矩阵重归一化组(tDMRG)的基础上研究了这种设置下的畴壁熔化。我们对由不完善的初始状态产生的缺陷的影响特别感兴趣。典型的缺陷是孔(空位)和自旋翻转。我们表明,可以通过从干净的情况下空间移动的可观测对象的线性组合来考虑孔对可观测对象的主要影响,例如空间分辨的磁化强度。对于足够大的U,由于空穴引起的其他影响可以忽略不计。相比之下,自旋翻转的影响更为严重,因为它们的动力学发生在与畴壁熔化本身相同的时间尺度上。因此,建议避免基于自旋翻转的准备方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号