...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Transformation kinetics of vapor-deposited thin film organic glasses: the role of stability and molecular packing anisotropy
【24h】

Transformation kinetics of vapor-deposited thin film organic glasses: the role of stability and molecular packing anisotropy

机译:气相沉积薄膜有机玻璃的转变动力学:稳定性和分子堆积各向异性的作用

获取原文
获取原文并翻译 | 示例
           

摘要

While ordinary glasses transform into supercooled liquid via a homogeneous bulk mechanism, thin film glasses of higher stability transform heterogeneously by a front propagating from the surface and/or the interfaces. In this work, we use quasi-adiabatic fast scanning nanocalorimetry to determine the heat capacity of thin glassy layers of indomethacin vapor-deposited in a broad temperature range of 110 K below the glass transition temperature. Their variation in fictive temperature amounts to 40 K. We show that a propagating front is the initial transformation mechanism in all cases. Using an ad hoc surface normalization procedure we determine the corresponding growth front velocity for the whole range of deposition temperatures. Although the transformation rate changes by a factor of 10 between the most and less stable samples, the relation between the mobility of the front and the thermodynamic stability of the glass is not uniquely defined. Glasses grown above 280 K, which are at equilibrium with the supercooled liquid, present a different dependence of the growth front velocity on fictive temperature compared to glasses grown out of equilibrium at T-dep < 250 K. These glasses transform faster with increasing T-f. Our data clarify previous reports and support the evidence that the fictive temperature alone is not an absolute indicator of the properties of the glass, at least when its structure is not completely isotropic. To interpret the data, we propose that the growth front velocity depends on three terms: the mobility of the liquid at a given temperature, the mobility of the glass and the arrangement of the molecules in the glass.
机译:普通玻璃通过均质的体积机制转变为过冷的液体,而稳定性更高的薄膜玻璃则通过从表面和/或界面传播的前表面异质地转变。在这项工作中,我们使用准绝热快速扫描纳米量热法确定了在玻璃化转变温度以下110 K的较宽温度范围内气相沉积的吲哚美辛薄玻璃层的热容。它们在虚构温度上的变化达40K。我们证明,在所有情况下,传播前沿都是初始的转化机制。使用临时表面归一化程序,我们确定了整个沉积温度范围内相应的生长前沿速度。尽管在最稳定和不太稳定的样品之间的转化率变化了10倍,但玻璃表面的迁移率与热力学稳定性之间的关系并不是唯一定义的。与在T-dep <250 K时不平衡生长的玻璃相比,生长在280 K以上且与过冷液体处于平衡状态的玻璃呈现出不同的生长前沿速度对虚拟温度的依赖性。这些玻璃的转变速度更快。我们的数据澄清了先前的报道,并支持以下证据:仅当玻璃的结构不是完全各向同性时,虚拟温度并不是玻璃性能的绝对指标。为了解释数据,我们建议生长前沿速度取决于三个术语:给定温度下液体的迁移率,玻璃的迁移率和玻璃中分子的排列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号