...
首页> 外文期刊>Optics Communications: A Journal Devoted to the Rapid Publication of Short Contributions in the Field of Optics and Interaction of Light with Matter >Combatting nonlinear phase noise in coherent optical systems with an optimized decision processor based on machine learning
【24h】

Combatting nonlinear phase noise in coherent optical systems with an optimized decision processor based on machine learning

机译:使用基于机器学习的优化决策处理器来处理相干光学系统中的非线性相位噪声

获取原文
获取原文并翻译 | 示例
           

摘要

An effective machine learning algorithm, the support vector machine (SVM), is presented in the context of a coherent optical transmission system. As a classifier, the SVM can create nonlinear decision boundaries to mitigate the distortions caused by nonlinear phase noise (NLPN). Without any prior information or heuristic assumptions, the SVM can learn and capture the link properties from only a few training data. Compared with the maximum likelihood estimation (MLE) algorithm, a lower bit-error rate (BER) is achieved by the SVM for a given launch power; moreover, the launch power dynamic range (LPDR) is increased by 3.3 dBm for 8 phase-shift keying (8 PSK), 1.2 dBm for QPSK, and 0.3 dBm for BPSK. The maximum transmission distance corresponding to a BER of 1 x 10(-3) is increased by 480 km for the case of 8 PSK. The larger launch power range and longer transmission distance improve the tolerance to amplitude and phase noise, which demonstrates the feasibility of the SVM in digital signal processing for M-PSK formats. Meanwhile, in order to apply the SVM method to 16 quadratic amplitude modulation (16 QAM) detection, we propose a parameter optimization scheme. By utilizing a cross-validation and grid-search techniques, the optimal parameters of SVM can be selected, thus leading to the LPDR improvement by 2.8 dBm. Additionally, we demonstrate that the SVM is also effective in combating the laser phase noise combined with the inphase and quadrature (I/Q) modulator imperfections, but the improvement is insignificant for the linear noise and separate l/Q imbalance. The computational complexity of SVM is also discussed. The relatively low complexity makes it possible for SVM to implement the real-time processing. (C) 2016 Elsevier B.V. All rights reserved.
机译:在相干光传输系统的背景下,提出了一种有效的机器学习算法,即支持向量机(SVM)。作为分类器,SVM可以创建非线性决策边界以减轻由非线性相位噪声(NLPN)引起的失真。在没有任何先验信息或启发式假设的情况下,SVM只能从少量训练数据中学习并捕获链接属性。与最大似然估计(MLE)算法相比,对于给定的发射功率,SVM可以实现更低的误码率(BER)。此外,对于8个相移键控(8 PSK),发射功率动态范围(LPDR)增加了3.3 dBm,对于QPSK,发射功率动态范围(LPDR)增加了1.2 dBm,对于BPSK,则增加了0.3 dBm。对于8 PSK,对应于BER为1 x 10(-3)的最大传输距离增加了480 km。更大的发射功率范围和更长的传输距离提高了对幅度和相位噪声的容忍度,这证明了SVM在M-PSK格式的数字信号处理中的可行性。同时,为了将支持向量机方法应用于16二次振幅调制(16 QAM)检测,我们提出了一种参数优化方案。通过使用交叉验证和网格搜索技术,可以选择SVM的最佳参数,从而使LPDR提高2.8 dBm。此外,我们证明了SVM还可以有效地消除与同相和正交(I / Q)调制器缺陷相结合的激光相位噪声,但是对于线性噪声和单独的L / Q不平衡而言,改进并不明显。还讨论了支持向量机的计算复杂性。相对较低的复杂度使SVM可以实现实时处理。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号