...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Mechanically Robust, Rapidly Actuating, and Biologically Functionalized Macroporous Poly(N-isopropylacrylamide)/Silk Hybrid Hydrogels
【24h】

Mechanically Robust, Rapidly Actuating, and Biologically Functionalized Macroporous Poly(N-isopropylacrylamide)/Silk Hybrid Hydrogels

机译:机械坚固,快速启动和生物功能化的大孔聚(N-异丙基丙烯酰胺)/丝绸混合水凝胶

获取原文
获取原文并翻译 | 示例
           

摘要

A route toward mechanically robust, rapidly actuating, and biologically functionalized polymeric actuators using macroporous soft materials is described. The materials were prepared by combining silk protein and a synthetic polymer (poly(N-isopropylacrylamide) (PNIAPPm)) to form interpenetrating network materials and macroporous structures by freeze-drying, with hundreds of micrometer diameter pores and exploiting the features of both polymers related to dynamic materials and structures. The chemically cross-linked PNIPAAm networks provided stimuli-responsive features, while the silk interpenetrating network formed by inducing protein β-sheet crystallinity in situ for physical cross-links provided material robustness, improved expansion force, and enzymatic degradability. The macroporous hybrid hydrogels showed enhanced thermal-responsive properties in comparison to pure PNIPAAm hydrogels, nonporous silk/PNIPAAm hybrid hydrogels, and previously reported macroporous PNIPAAm hydrogels. These new systems reach near equilibrium sizes in shrunken/swollen states in less than 1 min, with the structural features providing improved actuation rates and stable oscillatory properties due to the macroporous transport and the mechanically robust silk network. Confocal images of the hydrated hydrogels around the lower critical solution temperature (LCST) revealed macropores that could be used to track changes in the real time morphology upon thermal stimulus. The material system transformed from a macroporous to a nonporous structure upon enzymatic degradation. To extend the utility of the system, an affinity platform for a switchable or tunable system was developed by immobilizing biotin and avidin on the macropore surfaces.
机译:描述了通向使用大孔软材料的机械坚固,快速致动和生物功能化的聚合物致动器的途径。该材料是通过将丝蛋白和合成聚合物(聚(N-异丙基丙烯酰胺)(PNIAPPm))混合,通过冷冻干燥形成互穿网络材料和大孔结构而制备的,具有数百个直径的孔,并利用两种聚合物的相关特性动态材料和结构。化学交联的PNIPAAm网络提供了刺激响应功能,而通过在原位诱导蛋白质β-折叠结晶性以进行物理交联而形成的丝绸互穿网络则提供了材料坚固性,改善的膨胀力和酶促降解性。与纯PNIPAAm水凝胶,无孔丝/ PNIPAAm杂化水凝胶以及先前报道的大孔PNIPAAm水凝胶相比,大孔杂化水凝胶显示出增强的热响应特性。这些新系统可在不到1分钟的时间内以收缩/溶胀状态达到接近平衡的尺寸,并且由于大孔传输和机械坚固的丝状网络,其结构特征可提供更高的驱动速率和稳定的振荡特性。在较低的临界溶液温度(LCST)附近的水合水凝胶的共聚焦图像显示了大孔,可用于跟踪热刺激后实时形态的变化。酶降解后,材料系统从大孔结构转变为无孔结构。为了扩展该系统的实用性,通过将生物素和抗生物素蛋白固定在大孔表面上,开发了可切换或可调系统的亲和平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号