首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface
【24h】

Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface

机译:微米大小的水滴在平坦干燥表面上的撞击动力学和蒸发

获取原文
获取原文并翻译 | 示例
           

摘要

A comprehensive numerical and experimental investigation on micrometer-sized water droplet impact dynamics and evaporation on an unheated, flat, dry surface is conducted from the standpoint of spray-cooling technology. The axisymmetric time-dependent governing equations of continuity, momentum, energy, and species are solved. Surface tension, wall adhesion effect, gravitational body force, contact line dynamics, and evaporation are accounted for in the governing equations. The explicit volume of fluid (VOF) model with dynamic meshing and variable-time stepping in serial and parallel processors is used to capture the time-dependent liquid-gas interface motion throughout the computational domain. The numerical model includes temperature- and species-dependent thermodynamic and transport properties. The contact line dynamics and the evaporation rate are predicted using Blake's and Schrage's molecular kinetic models, respectively. An extensive grid independence study was conducted. Droplet impingement and evaporation data are acquired with a standard dispensing/imaging system and high-speed photography. The numerical results are compared with measurements reported in the literature for millimeter-size droplets and with current microdroplet experiments in terms of instantaneous droplet shape and temporal spread (R/D_0 or R/R _E), flatness ratio (H/D_0), and height (H/H_E) profiles, as well as temporal volume (A) profile. The Weber numbers (We) for impinging droplets vary from 1.4 to 35.2 at nearly constant Ohnesorge number (Oh) of ~0.025-0.029. Both numerical and experimental results show that there is air bubble entrapment due to impingement. Numerical results indicate that Blake's formulation provides better results than the static (SCA) and dynamic contact angle (DCA) approach in terms of temporal evolution of R/D _0 and H/D_0 (especially at the initial stages of spreading) and equilibrium flatness ratio (H_E/D_0). Blake's contact line dynamics is dependent on the wetting parameter (K_W). Both numerical and experimental results suggest that at 4.5 < We < 11.0 the short-time dynamics of microdroplet impingement corresponds to a transition regime between two different spreading regimes (i.e., for We ≤ 4.5, impingement is followed by spreading, then contact line pinning and then inertial oscillations, and for We ≥ 11.0, impingement is followed by spreading, then recoiling, then contact line pinning and then inertial oscillations). Droplet evaporation can be satisfactorily modeled using the Schrage model, since it predicts both well-defined transient and quasi-steady evaporation stages. The model compares well with measurements in terms of flatness ratio (H/H_E) before depinning occurs. Toroidal vortices are formed on the droplet surface in the gaseous phase due to buoyancy-induced Rayleigh-Taylor instability that enhances convection.
机译:从喷雾冷却技术的角度出发,对微米尺寸的水滴在未加热,平坦,干燥的表面上的撞击动力学和蒸发进行了全面的数值和实验研究。求解了连续性,动量,能量和种类的轴对称时间相关控制方程。在控制方程中考虑了表面张力,壁粘附效应,重力,接触线动力学和蒸发。串行和并行处理器中具有动态网格划分和可变时间步进的显式流体体积(VOF)模型用于捕获整个计算域中随时间变化的液-气界面运动。数值模型包括与温度和物种有关的热力学和传输特性。分别使用Blake和Schrage的分子动力学模型预测接触线的动力学和蒸发速率。进行了广泛的电网独立性研究。液滴撞击和蒸发数据通过标准分配/成像系统和高速摄影获得。将数值结果与文献中报道的毫米级液滴的测量结果以及当前微滴实验的瞬时液滴形状和时间分布(R / D_0或R / R _E),平坦度比(H / D_0)和高度(H / H_E)轮廓以及时间体积(A)轮廓。撞击液滴的韦伯数(We)在1.4〜35.2范围内,近似于恒定的Ohnesorge数(Oh)为〜0.025-0.029。数值和实验结果均表明,由于撞击而存在气泡截留。数值结果表明,就R / D _0和H / D_0的时间演变(尤其是在铺展的初始阶段)和平衡平坦度比而言,布雷克的公式提供了比静态(SCA)和动态接触角(DCA)方法更好的结果。 (H_E / D_0)。布莱克的接触线动力学取决于润湿参数(K_W)。数值和实验结果均表明,在4.5

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号