...
首页> 外文期刊>Nanotechnology >A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures
【24h】

A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures

机译:使用三维组装的纳米粒子结构的纳米晶体硅薄膜太阳能电池的光阱策略

获取原文
获取原文并翻译 | 示例

摘要

We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multipin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.
机译:我们报告了三维组装的纳米粒子结构诱导的纳米晶硅(nc-Si:H)薄膜太阳能电池中的宽带光收集的多个等离子体共振。通过离子辅助气溶胶光刻技术,已在大气条件下大面积完成了使用多销火花放电方法生成的纳米粒子的三维多尺度(3DM)组装。复杂的3DM结构的多尺度特征在多个频率下均表现出表面等离子体共振,从而在350-1100 nm的宽光谱范围内提高了光散射和吸收效率。与3D太阳能电池的共形沉积顶面产生的多重等离子体共振以及抗反射功能相比,nc-Si:H薄膜太阳能电池的功率转换效率提高了22%和11%分别是扁平细胞和采用纳米粒子簇的细胞。还进行了时域有限差分仿真,以确认改进的器件性能主要源自三维组装的纳米粒子结构产生的多个等离子体共振。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号