首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Polycrystalline Silicon Thin-film Solar cells with Plasmonic-enhanced Light-trapping
【2h】

Polycrystalline Silicon Thin-film Solar cells with Plasmonic-enhanced Light-trapping

机译:等离子体增强光阱的多晶硅薄膜太阳能电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach.The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles.To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm2, which can be increased up to 17-18 mA/cm2 (~25% higher) after application of a simple diffuse back reflector made of a white paint.To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing conditions. An optimised nanoparticle array alone results in cell Jsc enhancement of about 28%, similar to the effect of the diffuse reflector. The photocurrent can be further increased by coating the nanoparticles by a low refractive index dielectric, like MgF2, and applying the diffused reflector. The complete plasmonic cell structure comprises the polycrystalline silicon film, a silver nanoparticle array, a layer of MgF2, and a diffuse reflector. The Jsc for such cell is 21-23 mA/cm2, up to 45% higher than Jsc of the original cell without light-trapping or ~25% higher than Jsc for the cell with the diffuse reflector only.IntroductionLight-trapping in silicon solar cells is commonly achieved via light scattering at textured interfaces. Scattered light travels through a cell at oblique angles for a longer distance and when such angles exceed the critical angle at the cell interfaces the light is permanently trapped in the cell by total internal reflection >(Animation 1: Light-trapping). Although this scheme works well for most solar cells, there are developing technologies where ultra-thin Si layers are produced planar (e.g. layer-transfer technologies and epitaxial c-Si layers) 1 and or when such layers are not compatible with textures substrates (e.g. evaporated silicon) 2. For such originally planar Si layer alternative light trapping approaches, such as diffuse white paint reflector 3, silicon plasma texturing 4 or high refractive index nanoparticle reflector 5 have been suggested.Metal nanoparticles can effectively scatter incident light into a higher refractive index material, like silicon, due to the surface plasmon resonance effect 6. They also can be easily formed on the planar silicon cell surface thus offering a light-trapping approach alternative to texturing. For a nanoparticle located at the air-silicon interface the scattered light fraction coupled into silicon exceeds 95% and a large faction of that light is scattered at angles above critical providing nearly ideal light-trapping condition >(Animation 2: Plasmons on NP). The resonance can be tuned to the wavelength region, which is most important for a particular cell material and design, by varying the nanoparticle average size, surface coverage and local dielectric environment 6,7. Theoretical design principles of plasmonic nanoparticle solar cells have been suggested 8. In practice, Ag nanoparticle array is an ideal light-trapping partner for poly-Si thin-film solar cells because most of these design principle are naturally met. The simplest way of forming nanoparticles by thermal annealing of a thin precursor Ag film results in a random array with a relatively wide size and shape distribution, which is particularly suitable for light-trapping because such an array has a wide resonance peak, covering the wavelength range of 700-900 nm, important for poly-Si solar cell performance. The nanoparticle array can only be located on the rear poly-Si cell surface thus avoiding destructive interference between incident and scattered light which occurs for front-located nanoparticles 9. Moreover, poly-Si thin-film cells do not requires a passivating layer and the flat base-shaped nanoparticles (that naturally result from thermal annealing of a metal film) can be directly placed on silicon further increases plasmonic scattering efficiency due to surface plasmon-polariton resonance 10.The cell with the plasmonic nanoparticle array as described above can have a photocurrent about 28% higher than the original cell. However, the array still transmits a significant amount of light which escapes through the rear of the cell and does not contribute into the current. This loss can be mitigated by adding a rear reflector to allow catching transmitted light and re-directing it back to the cell. Providing sufficient distance between the reflector and the nanoparticles (a few hundred nanometers) the reflected light will then experience one more plasmonic scattering event while passing through the nanoparticle array on re-entering the cell and the reflector itself can be made diffuse - both effects further facilitating light scattering and hence light-trapping. Importantly, the Ag nanoparticles have to be encapsulated with an inert and low refractive index dielectric, like MgF2 or SiO2, from the rear reflector to avoid mechanical and chemical damage 7. Low refractive index for this cladding layer is required to maintain a high coupling fraction into silicon and larger scattering angles, which are ensured by the high optical contrast between the media on both sides of the nanoparticle, silicon and dielectric 6. The photocurrent of the plasmonic cell with the diffuse rear reflector can be up to 45% higher than the current of the original cell or up to 25% higher than the current of an equivalent cell with the diffuse reflector only.
机译:廉价太阳能电池的主要方法之一是减少用于制造太阳能电池的半导体材料的数量并使电池更薄。为了补偿较低的光吸收,这种物理上薄的设备必须结合光陷阱,这会增加其光学厚度。织构化表面的光散射是一种常见技术,但不能普遍应用于所有太阳能电池技术。一些电池,例如由蒸发的硅制成的电池,在生产时是平面的,并且它们需要适用于平面设备的替代的光捕获装置。在平面硅电池表面形成金属纳米粒子并由于表面等离振子共振而能够散射的金属纳米粒子是一种有效的方法。本文提出了一种具有等离激元俘获的蒸发多晶硅太阳能电池的制造工艺,并演示了如何由于以下原因而提高了电池量子效率。为了制造电池,通过电子束蒸发将由交替的硼和磷掺杂的硅层组成的膜沉积在玻璃基板上。通过退火和氢钝化可以使最初的非晶膜结晶并减轻电子缺陷。将金属栅极触点施加到相反极性的层上,以提取电池产生的电。通常,这种〜2μm厚的电池具有14-16 mA / cm 2 的短路电流密度(Jsc),可以提高到17-18 mA / cm 在应用由白色涂料制成的简单漫反射式反光镜后,再进行2 处理(约高25%)。为实现等离子光捕获,在金属化的硅表面上形成了一个银纳米粒子阵列。通过热蒸发将前体银膜沉积在电池上,并在23°C退火以形成银纳米颗粒。可以通过改变前驱体膜的厚度及其退火条件来调整影响等离子光散射的纳米粒子的大小和覆盖范围,以增强电池性能。单独使用优化的纳米颗粒阵列可以使细胞的Jsc增强约28%,类似于漫反射器的效果。通过使用低折射率电介质(如MgF2)涂覆纳米颗粒并施加漫反射器,可以进一步增加光电流。完整的等离激元细胞结构包括多晶硅膜,银纳米颗粒阵列,MgF2层和漫反射器。此类电池的Jsc为21-23 mA / cm 2 ,比不带光阱的原始电池的Jsc高出45%,比具有漫反射器的电池的Jsc高约25%。简介硅太阳能电池中的光陷阱通常是通过纹理界面处的光散射来实现的。散射光以一定的斜角穿过细胞较长的距离,并且当这些角度超过细胞界面的临界角时,光会通过全内反射而永久地捕获在细胞中(动画1:光捕获)强>。尽管此方案对大多数太阳能电池都适用,但是有一些正在开发的技术可以将超薄硅层平面化(例如,层转移技术和外延c-Si层) 1 与纹理衬底(例如,蒸发的硅) 2 不兼容。对于这种最初的平面Si层,可以使用其他光捕获方法,例如,漫反射的白色涂料反射器 3 ,硅等离子体纹理化的 4 或高折射率纳米粒子反射器 5 6 ,可以有效地将入射光散射到折射率更高的材料(如硅)中。它们也可以很容易地形成在平面硅电池表面上,从而提供了一种替代纹理化的光阱方法。对于位于空气-硅界面处的纳米粒子,耦合到硅中的散射光份额超过95%,并且该光的很大一部分以高于临界角的角度散射,从而提供了近乎理想的光捕获条件>(动画2:NP上的等离激元)。通过改变纳米粒子的平均大小,表面覆盖率和局部介电环境 6,7 ,可以将共振调整到对于特定电池材料和设计最重要的波长区域。 8 提出了等离激元纳米粒子太阳能电池的理论设计原理。实际上,Ag纳米粒子阵列是多晶硅薄膜太阳能电池的理想捕光伙伴,因为自然满足了大多数这些设计原则。通过对薄的前体Ag薄膜进行热退火形成纳米颗粒的最简单方法是形成具有相对较宽的尺寸和形状分布的随机阵列,这特别适合于光捕获,因为这种阵列具有宽的共振峰覆盖700-900 nm的波长范围,对于多晶硅太阳能电池的性能至关重要。纳米颗粒阵列只能位于多晶硅电池的背面,因此可以避免入射光和散射光之间发生破坏性干涉,这种干涉发生在位于前面的纳米颗粒 9 上。此外,多晶硅薄膜电池不需要钝化层,并且可以将平底形的纳米颗粒(自然是由于金属膜的热退火而产生的)直接置于硅上,这是由于表面等离子体激元可以进一步提高等离子体的散射效率。极化子共振 10 。具有上述等离子体纳米粒子阵列的电池的光电流可以比原始电池高约28%。然而,该阵列仍然透射大量光,该光从电池的后部逸出并且不参与电流。可以通过添加后反射器来捕获传输的光并将其重新定向回该单元,从而减轻这种损失。如果在反射器和纳米粒子之间有足够的距离(几百纳米),那么反射光将在通过纳米粒子阵列重新进入细胞时经历另一次等离子体散射事件,并且反射器本身可以被扩散-两种作用都进一步促进光散射并因此引起光陷阱。重要的是,Ag纳米颗粒必须通过后反射器用惰性且低折射率的电介质(如MgF2或SiO2)封装,以避免机械和化学损伤 7 。需要此覆层的低折射率来维持与硅的高耦合分数和更大的散射角,这要通过纳米粒子两侧的介质,硅和电介质 6 。使用扩散后反射器的等离激元电池的光电流可以比原始电池的电流高45%,或者比仅使用扩散反射器的等效电池的电流高25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号