...
首页> 外文期刊>Nanotechnology >Monolithic integration of nanoscale tensile specimens and MEMS structures
【24h】

Monolithic integration of nanoscale tensile specimens and MEMS structures

机译:纳米级拉伸试样和MEMS结构的单片集成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nanoscale materials often have stochastic material properties due to a random distribution of material defects and an insufficient number of defects to ensure a consistent average mechanical response. Current methods to measure the mechanical properties employ MEMS-based actuators. The nanoscale specimens are typically mounted manually onto the load platform, so the boundary conditions have random variations, complicating the experimental measurement of the intrinsic stochasticity of the material properties. Here we show methods for monolithic integration of a nanoscale specimen co-fabricated with the loading platform. The nanoscale specimen is gold with dimensions of ~40 nm thickness, 350 ± 50 nm width, and 7 μm length and the loading platform is an interdigitated electrode electrostatic actuator. The experiment is performed in a scanning electron microscope and digital image correlation is employed to measure displacements to determine stress and strain. The ultimate tensile strength of the nanocrystalline nanoscale specimen approaches 1 GPa, consistent with measurements made by other nanometer scale sample characterization methods on other material samples at the nanometer scale, as well as gold samples at the nanometer scale. The batch-compatible microfabrication method can be used to create nominally identical nanoscale specimens and boundary conditions for a broad range of materials.
机译:由于材料缺陷的随机分布和缺陷数量不足以确保一致的平均机械响应,纳米级材料通常具有随机的材料特性。测量机械性能的当前方法采用基于MEMS的致动器。通常将纳米级样本手动安装到加载平台上,因此边界条件具有随机变化,从而使材料特性的内在随机性的实验测量变得复杂。在这里,我们展示了与加载平台共同制造的纳米级标本的单片集成方法。纳米标本是金,厚度约为40 nm,宽度为350±50 nm,长度为7μm,加载平台是指状电极静电致动器。该实验在扫描电子显微镜中进行,数字图像相关性用于测量位移以确定应力和应变。纳米晶体纳米级样品的极限拉伸强度接近1 GPa,这与通过其他纳米级样品表征方法对纳米级其他材料样品以及纳米级金样品进行的测量结果一致。批处理兼容的微细加工方法可用于为多种材料创建名义上相同的纳米尺度样品和边界条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号