...
首页> 外文期刊>Nanotechnology >In situ control of oxygen vacancies in TiO_2 by atomic layer deposition for resistive switching devices
【24h】

In situ control of oxygen vacancies in TiO_2 by atomic layer deposition for resistive switching devices

机译:电阻开关器件原子层沉积原位控制TiO_2中的氧空位

获取原文
获取原文并翻译 | 示例
           

摘要

Oxygen vacancies (VO) have profound effects on the physical and chemical performance of devices based on oxide materials. This is particularly true in the case of oxide-based resistive random access memories, in which memory switching operation under an external electrical stimulus is closely associated with the migration and ordering of the oxygen vacancies in the oxide material. In this paper, we report on a reliable approach to in situ control of the oxygen vacancies in TiO_x films. Our strategy for tight control of the oxygen vacancy is based on the utilization of plasma-enhanced atomic layer deposition of titanium oxide under precisely regulated decomposition of the precursor molecules (titanium (IV) tetraisopropoxide, Ti[OCH(CH _3)_2]_4) by plasma-activated reactant mixture (N_2+O_2). From the various spectroscopic and microstructural analyses by using Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, confocal Raman spectroscopy, and spectroscopic ellipsometry, we found that the precursor decomposition power (R_F) of plasma-activated reactant mixture determines not only the oxygen vacancy concentration but also the crystallinity of the resulting TiO_x film: nanocrystalline anatase TiO_x with fewer oxygen vacancies under high R_F, while amorphous TiO_x with more oxygen vacancies under low R_F. Enabled by our controlling capability over the oxygen vacancy concentration, we were able to thoroughly elucidate the effect of oxygen vacancies on the resistive switching behavior of TiO_x-based memory capacitors (Pt/TiO_x/Pt). The electrical conduction behavior at the high resistance state could be explained within the framework of the trap-controlled space-charge-limited conduction with two characteristic transition voltages. One is the voltage (V_(SCL)) for the transition from Ohmic conduction to space-charge-limited conduction, and the other is the voltage (V_(TFL)) for transition from space-charge-limited conduction to trap-filled-limited conduction. In this work, we have disclosed for the first time the dependence of these two characteristic transition voltages (i.e., V_(SCL) and V _(TFL)) on the oxygen vacancy concentration.
机译:氧空位(VO)对基于氧化物材料的设备的物理和化学性能产生深远影响。在基于氧化物的电阻式随机存取存储器的情况下尤其如此,其中在外部电刺激下的存储器切换操作与氧化物材料中的氧空位的迁移和排序紧密相关。在本文中,我们报告了一种可靠的方法来原位控制TiO_x薄膜中的氧空位。我们严格控制氧空位的策略是基于在前体分子(钛(IV)四异丙氧基钛(IV),Ti [OCH(CH _3)_2] _4)精确调控的分解下利用等离子体增强的钛氧化物原子层沉积通过等离子体活化的反应混合物(N_2 + O_2)。通过使用卢瑟福背散射光谱,X射线光电子能谱,高分辨率透射电子显微镜,共聚焦拉曼光谱和椭圆偏振光谱对各种光谱和微观结构进行分析,我们发现等离子活化反应混合物的前体分解能力(R_F)不仅决定了氧空位浓度,而且还决定了所得TiO_x膜的结晶度:在高R_F下具有较少氧空位的纳米晶锐钛矿TiO_x,而在低R_F下具有更多氧空位的非晶TiO_x。通过控制氧空位浓度的能力,我们能够彻底阐明氧空位对基于TiO_x的存储电容器(Pt / TiO_x / Pt)的电阻开关行为的影响。高阻态下的电导通行为可以在具有两个特征跃迁电压的陷阱控制的空间电荷限制导通的框架内进行解释。一个是用于从欧姆导电过渡到空间电荷受限的导电的电压(V_(SCL)),另一个是用于从空间电荷受限导电过渡到陷阱填充的导电的电压(V_(TFL))传导受限。在这项工作中,我们首次公开了这两个特征转变电压(即V_(SCL)和V_(TFL))对氧空位浓度的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号