首页> 外文期刊>Macromolecules >Primitive chain network simulation of elongational flows of entangled linear chains: Role of finite chain extensibility
【24h】

Primitive chain network simulation of elongational flows of entangled linear chains: Role of finite chain extensibility

机译:纠缠线性链伸长流的原始链网络仿真:有限链可扩展性的作用

获取原文
获取原文并翻译 | 示例
       

摘要

For entangled linear monodisperse polymers, uniaxial elongational flow behavior was examined with the primitive chain network (PCN) simulation, which was originally formulated for a network of Gaussian chains bound by sliplinks but was modified in this study to properly take into account the finite extensibility of actual chains. On an increase of the elongational rate ε? from the terminal relaxation frequency 1/τ_d (at equilibrium) to the Rouse relaxation frequency 1/τ_R, the original and modified simulations gave an indistinguishable steady state elongational viscosity η_E that almost scaled as ε?~(-1/2). On a further increase of ε? > 1/τ_R, η_E obtained from the original PCN simulation diverged to infinity (as noted also for the unentangled Rouse chains). In contrast, η_E deduced from the modified simulation increased but did not diverge with increasing ε? > 1/τ_R (similarly to the behavior of FENE dumbbells). This feature of the modified PCN simulation, i.e., hardening to a finite (nondiverging) level, mimicked the η_E data of entangled semidilute solutions, which naturally reflected the finite extensibility of actual chains. Analysis of the simulation results suggested that the power law behavior (η_E ~ ε?~(-1/2)) at 1/τ_d< ε? < 1/τ_R is related to reduction of the entanglement density and the corresponding reduction of chain tension, while the hardening (upturn of η_E at ε? > 1/τ_R) results from stretch of the chain (eventually approaching full stretch), thus shedding light on the behavior of semidilute solutions. Nevertheless, the modified simulation did not describe the behavior of entangled melts, i.e., η_E ~ ε?~(-1/2) even at ε? > 1/τ_R. A factor missing in the modified simulation is discussed in an attempt to elucidate, from a molecular point of view, the difference between entangled solutions and melts.
机译:对于缠结的线性单分散聚合物,使用原始链网(PCN)模拟检查了单轴伸长流动行为,该模拟最初是为由滑链束缚的高斯链网络制定的,但在本研究中进行了修改,以适当考虑到有限的可扩展性。实际的连锁店。伸长率ε≥增加从末端弛豫频率1 /τ_d(处于平衡状态)到Rouse弛豫频率1 /τ_R,原始和修改的模拟给出了几乎没有区别的稳态伸长粘度η_E,几乎定为ε?〜(-1/2)。 ε进一步增加> 1 /τ_R,从原始PCN模拟获得的η_E发散到无穷大(对于非纠缠的Rouse链也有说明)。相反,从修改后的仿真推导的η_E增加,但不随ε?的增加而发散。 > 1 /τ_R(类似于FENE哑铃的行为)。修改后的PCN模拟的此功能(即硬化到有限(非发散)水平)模仿了纠缠的半稀释解的η_E数据,这自然反映了实际链的有限可扩展性。对仿真结果的分析表明,在1 /τ_d<ε?处的幂律行为(η_E〜ε?〜(-1/2))。 <1 /τ_R与缠结密度的降低以及链条张力的相应降低有关,而硬化(η_E在ε?> 1 /τ_R处的上翻)是由链条的拉伸(最终接近全拉伸)导致的,因此脱落讨论半稀释溶液的行为。然而,改进的模拟并未描述纠缠的熔体的行为,即η_E〜ε?〜(-1/2),甚至在ε?时也是如此。 > 1 /τ_R。为了从分子的角度阐明纠缠溶液和熔体之间的差异,讨论了修改后的模拟中缺少的一个因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号