首页> 外文期刊>European Journal of Operational Research >Algorithm for computing the queue length distribution at various time epochs in DMAP/G((1,a,b))/1/N queue with batch-size-dependent service time
【24h】

Algorithm for computing the queue length distribution at various time epochs in DMAP/G((1,a,b))/1/N queue with batch-size-dependent service time

机译:用于计算DMAP / G((1,a,b))/ 1 / N队列中各个时间段的队列长度分布的算法,该时间与批处理大小有关

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a discrete-time single-server finite-buffer queue with Markovian arrival process and generally distributed batch-size-dependent service time. Given that infinite service time is not commonly encountered in practical situations, we suppose that the distribution of the service time has a finite support. Recently, a similar continuous-time system with Poisson input process was discussed by Banerjee and Gupta (2012). But unfortunately, their method is hard to apply in the analysis of discrete-time case with versatile Markovian point process due to the fact that the difference equation governing the boundary state probabilities is more complex than the continuous one. If we follow their ideas, we will eventually find that some important joint queue length distributions cannot be computed and thus some key performance measures cannot be derived. In this paper, replacing the finite support renewal distribution with an appropriate phase-type distribution, the joint state probabilities at various time epochs (arbitrary, pre-arrival and departure) have been obtained by using matrix analytic method and embedded Markov chain technique. Furthermore, UL-type RG-factorization is employed in numerical computation of block-structured Markov chains with finitely-many levels. Some numerical examples are presented to demonstrate the feasibility of the proposed algorithm for several service time distributions. Moreover, the impact of the correlation factor on loss probability and mean sojourn time is also investigated. (C) 2015 Elsevier BY. All rights reserved.
机译:本文提出了一个离散时间的单服务器有限缓冲队列,该队列具有马尔可夫到达过程,并且通常分布与批大小相关的服务时间。鉴于在实际情况中不经常遇到无限的服务时间,我们假设服务时间的分配具有有限的支持。最近,Banerjee和Gupta(2012)讨论了一种类似的具有Poisson输入过程的连续时间系统。但是不幸的是,由于控制边界状态概率的差分方程比连续方程更复杂,因此,他们的方法很难用于具有通用马尔可夫点过程的离散时间分析。如果遵循他们的想法,我们最终会发现无法计算出一些重要的联合队列长度分布,因此就无法得出一些关键绩效指标。在本文中,用适当的相位类型分布替换有限支持更新分布,通过矩阵分析方法和嵌入式马尔可夫链技术,获得了各个时间(任意,到达和离开)的联合状态概率。此外,在有限级的块结构马尔可夫链的数值计算中,采用了UL型RG分解。给出了一些数值算例,以证明该算法在几种服务时间分配中的可行性。此外,还研究了相关因子对损失概率和平均停留时间的影响。 (C)2015 Elsevier BY。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号