首页> 外文期刊>Electrochimica Acta >Engineered Interfacial and Configuration Design of Double Layered SnO2@TiO2-ZnO Nanoplates Ternary Heterostructures for Efficient Dye-Sensitized Solar Cells
【24h】

Engineered Interfacial and Configuration Design of Double Layered SnO2@TiO2-ZnO Nanoplates Ternary Heterostructures for Efficient Dye-Sensitized Solar Cells

机译:高效染料敏化太阳能电池双层SnO2 @ TiO2-ZnO纳米板三元异质结构的工程界面和构型设计

获取原文
获取原文并翻译 | 示例
           

摘要

The engineered interfacial and configuration design of anode materials plays pivotal role in photovoltaic performance of solar cells. Here we demonstrated a double layered SnO2@TiO2-ZnO nanoplates composite films on fluorine-doped tin oxide (FTO) substrate as photoanodes for high-performance dye-sensitized solar-cells (DSSCs). The results indicate that DSSCs based on double layered SnO2@TiO2-ZnO nanoplates composite film (similar to 5.55%) show an obvious 29.1% increase of power conversion efficiency as compared to the single layered SnO2@TiO2 nanoparticles photoelectrode with the same thickness of similar to 18.5 mu m. Intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) as well as electrochemical impedance spectra (EIS) measurements show that the double layered SnO2@TiO2-ZnO nanoplates film has faster electron transport rate and slower electron recombination rate than the SnO2@TiO2 one. Furthermore, final power conversion efficiency has been optimized to reach up similar to 6.37% (J(sc) of 17.18 mA cm(-2), V-oc of 742 mV and FF of 0.50) for the double layered SnO2@TiO2-ZnO nanoplates film photoanodes with the introduction of additional SnO2 blocking layer which would suppress the electron recombination between FTO glass and electrolyte. One of the specific advantages of the unique structure is the engineered integration of different promising materials, which made it possible to take full advantages of the superior dye adsorption, charge collection, charge transfer dynamics as well as optical scattering simultaneously. This study provides a scheme to selective combination of specific semiconductors metal oxides, namely, SnO2, TiO2 and ZnO, into an ideal photoanode configuration according to the feasible electron injection and transport dynamics, which has been regarded as promising photoanode materials for DSSCs. Fundamentally, this unique structure not only enables the high-efficiency solar cells application, but also provides a scheme for the inspiration of materials integration and guidance of effective materials surface and interfacial modification. (C) 2014 Elsevier Ltd. All rights reserved.
机译:阳极材料的工程化界面和配置设计在太阳能电池的光伏性能中起着关键作用。在这里,我们展示了在掺氟氧化锡(FTO)衬底上的双层SnO2 @ TiO2-ZnO纳米板复合膜,作为高性能染料敏化太阳能电池(DSSC)的光阳极。结果表明,与相同厚度,相同厚度的单层SnO2 @ TiO2纳米颗粒光电极相比,基于双层SnO2 @ TiO2-ZnO纳米板复合膜(约5.55%)的DSSC的功率转换效率明显提高了29.1%。至18.5微米强度调制的光电流/光电压能谱(IMPS / IMVS)以及电化学阻抗谱(EIS)测量表明,双层SnO2 @ TiO2-ZnO纳米板薄膜比SnO2 @ TiO2薄膜具有更快的电子传输速率和更慢的电子复合速率。此外,双层SnO2 @ TiO2-ZnO的最终功率转换效率已经优化,达到了类似于6.37%(J(sc)为17.18 mA cm(-2),V-oc为742 mV和FF为0.50)的水平。纳米板通过引入额外的SnO2阻挡层来薄膜化光阳极,这将抑制FTO玻璃和电解质之间的电子复合。独特结构的特殊优势之一是对各种有前途的材料进行了工程集成,这使得可以同时利用出色的染料吸附,电荷收集,电荷转移动力学以及光学散射等优点。这项研究提供了一种方案,根据可行的电子注入和传输动力学,将特定的半导体金属氧化物(即SnO2,TiO2和ZnO)选择性地组合成理想的光电阳极配置,这被认为是DSSC的有希望的光电阳极材料。从根本上说,这种独特的结构不仅可以实现高效率的太阳能电池应用,而且还为启发材料集成和指导有效材料表面和界面改性提供了一种方案。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号