首页> 外文学位 >Atomistic Modeling of Interfacial Electron Transfer in Dye-Sensitized Solar Cells; Exploring the Potential to Generate Solar Fuels.
【24h】

Atomistic Modeling of Interfacial Electron Transfer in Dye-Sensitized Solar Cells; Exploring the Potential to Generate Solar Fuels.

机译:染料敏化太阳能电池中界面电子转移的原子建模;探索产生太阳能的潜力。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, simulations of interfacial electron transfer provide insight into the design principles of a modified dye-sensitized solar cell for water splitting. Generating solar fuels may be a solution to the growing global energy crisis. Solar energy call be stored as hydrogen fuel by splitting water into its elemental components with sunlight. Atomistic simulations of interfacial electron transfer were performed by solving the time-dependent Schrodinger equation. The simulations give insight into the mechanism and kinetics of the electron transfer process. In particular, possible designs of surface assemblies can be evaluated computationally before expensive and time consuming synthesis and device construction is attempted. A few aspects of interfacial electron transfer were investigated. The linkers acetylacetonate, hydroxamate, and phosphonate immobilize catalysts on TiO2 nanoparticles, mediate interfacial electron transfer, and are robust linkages in aqueous conditions required for water splitting. For pyridine-4-phosphonic acid on TiO2, ultrafast injection with a time scale of 460 fs was predicted. The binding mode of the phosphonate linker was found to be important, with up to 1 order of magnitude faster injection rate when attached in a bidentate mode compared to a monodentate mode. Solvent molecules, particularly water, compete with sensitizing adsorbates for close contact with the metal oxide surface creating noticeable changes in the electron transfer rate. For Rhodamine B on SnO2, the initial injection rate was slowed from 92 fs to 116 fs and the slow component of the injection was reduced from 895 fs to 1411 fs after the surface was hydrated by a few monolayers of water molecules. Long flexible bridges provide conformational flexibility and drastically reduce the electron transfer rate. For Sulforhadamine B on SnO2, adding a saturated bridge shifts injection from the picosecond to the nanosecond time scale. These results have important implications for designing devices to generate solar fuels.
机译:在这篇论文中,界面电子转移的模拟提供了对用于水分解的改进的染料敏化太阳能电池的设计原理的认识。产生太阳能燃料可以解决日益严重的全球能源危机。通过将水与阳光分解成其基本成分,将太阳能称为氢燃料。通过求解与时间有关的薛定inger方程,进行了界面电子转移的原子模拟。这些模拟使人们深入了解了电子转移过程的机理和动力学。特别地,在尝试昂贵且费时的合成和器件构造之前,可以通过计算来评估表面组件的可能设计。研究了界面电子转移的几个方面。接头乙酰丙酮酸酯,异羟肟酸酯和膦酸酯将催化剂固定在TiO2纳米颗粒上,介导界面电子转移,并且在水分解所需的水性条件下是牢固的键。对于在TiO2上的吡啶-4-膦酸,预计进样时间为460 fs的超快注入。发现膦酸酯连接体的结合模式很重要,当以双齿模式连接时,与单齿模式相比,注射速率快1个数量级。溶剂分子,特别是水,与敏化吸附物竞争,与金属氧化物表面紧密接触,从而导致电子传输速率发生明显变化。对于SnO2上的若丹明B,在表面被几层水分子水合后,初始注入速度从92 fs降低至116 fs,注入的缓慢成分从895 fs降低至1411 fs。长的柔性桥提供构象柔性,并大大降低了电子传输速率。对于SnO2上的Sulforhadamine B,添加饱和桥将注入量从皮秒移至纳秒级。这些结果对于设计产生太阳能的装置具有重要意义。

著录项

  • 作者

    Snoeberger, Robert Charles.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Alternative Energy.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号