...
首页> 外文期刊>Electrochimica Acta >Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries
【24h】

Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries

机译:封装在非晶碳纳米管中的锡合金异质结构作为可再充电锂离子电池中的混合阳极

获取原文
获取原文并翻译 | 示例
           

摘要

Sn anode in rechargeable lithium ion batteries (LIBs) is currently being intensely investigated due to high reversible capacity and energy density as compared to the commercialized graphite anode. However, large volume change upon cycling causes poor cyclic performance, which prevents the practical application of Sn anode in LIBs. In this study, the nanosized M_xSn (M = Ni, Fe, and Cr) alloys were encapsulated in amorphous carbon nanotubes (ACNTs) creating hybrid anode heterostructures. The structure of the hybrid anodes was confirmed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and high angle dark field scanning transmission electron microscope (HAADF-STEM), and demonstrated that Ni_3Sn_4, FeSn_2, and Cr_2Sn_3 alloys exist in the hybrid anodes as both nanowires and nanoparticles. The galvanostatic cycling originating from over 330 charge-discharge cycles indicated that encapsulation of Ni_3Sn_4, FeSn_2, and Cr_2Sn_3 into ACNTs results in surprisingly excellent cycling performance, high rate capability, and increased initial coulombic efficiency (81.4%). Ex situ HAADF-STEM images of anodes after cycles showed that one-dimensional ACNTs as well as electrochemically inactive phase M (Ni, Fe, and Cr) in M_xSn function as good matrices, offering "buffer zone" to effectively accommodate the mechanical stress induced by Sn anode expansion and shrinkage. Importantly, ACNTs enable electrical contact of Sn nanoparticles with the current collectors. Therefore, our design can significantly overcome electrochemical degradation of anodes with large volume change, resulting in increased LIB performance.
机译:与商业化石墨阳极相比,由于具有高可逆容量和高能量密度,可充电锂离子电池(LIBs)中的Sn阳极目前正在被广泛研究。然而,循环时大量的体积变化导致差的循环性能,这阻碍了Sn阳极在LIB中的实际应用。在这项研究中,纳米M_xSn(M = Ni,Fe和Cr)合金被封装在无定形碳纳米管(ACNT)中,形成混合阳极异质结构。通过X射线衍射(XRD),场发射扫描电子显微镜(FE-SEM)和高角度暗场扫描透射电子显微镜(HAADF-STEM)证实了杂化阳极的结构,并证明了Ni_3Sn_4,FeSn_2和Cr_2Sn_3合金既存在纳米线又存在于纳米颗粒中。源自超过330个充放电循环的恒电流循环表明,将Ni_3Sn_4,FeSn_2和Cr_2Sn_3封装到ACNT中可产生出乎意料的出色循环性能,高倍率性能和增加的初始库仑效率(81.4%)。循环后阳极的非原位HAADF-STEM图像显示,一维ACNT以及M_xSn中的电化学非活性相M(Ni,Fe和Cr)可作为良好的基质,提供“缓冲区”以有效适应感应到的机械应力受锡阳极膨胀和收缩的影响。重要的是,ACNT使Sn纳米颗粒与集电器实现电接触。因此,我们的设计可以显着克服体积变化较大的阳极的电化学降解,从而提高LIB性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号