首页> 外文期刊>International Journal of Quantum Chemistry >Theoretical study of mechanism of forming a silapolycyclic compound between methylenesilylene and acetone
【24h】

Theoretical study of mechanism of forming a silapolycyclic compound between methylenesilylene and acetone

机译:在亚甲基甲硅烷基和丙酮之间形成硅多环化合物的机理的理论研究

获取原文
获取原文并翻译 | 示例
       

摘要

The mechanism of the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has been investigated with MP2/6-31G~(z.ast) method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6-31G~* method. From the potential energy profile, we predict that the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (I) the two reactants (R1 R2) first form an intermediate (INT1) through a barrier-free exothermic reaction of 46.2 kJ/mol; (II) intermediate (INT1) then isomerizes to a planar four-membered ring product (P3) via transition state (TS3) with an energy barrier of 47.1 kJ/mol; (III) planar four-membered ring product (P3) further reacts with acetone (R2) to form an intermediate (INT4) which is also a barrier-free exothermic reaction of 40.0 kJ/mol; (IV) intermediate (INT4) isomerizes to a silapolycyclic compound (P4) via transition state (TS4) with an energy barrier of 57.0 kJ/mol. Second dominant reaction pathway consists of three steps: (I) the two reactants (R1, R2) first form a four-membered ring intermediate (INT2) through a barrier-free exothermic reaction of 0.5 kJ/mol; (II) INT2 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier-free exothermic reaction of 45.4 kJ/mol; (III) intermediate (INT5) isomerizes to a silapolycyclic compound (P5) via transition state (TS5) with an energy barrier of 49.3 kJ/mol. P4 and P5 are isomeric compounds.
机译:利用MP2 / 6-31G〜(z.ast)方法研究了单线态亚甲基亚甲硅烷基与丙酮之间形成硅多环化合物的环加成反应机理,包括几何优化和势能面上涉及的固定点的振动分析。不同构象的能量通过CCSD(T)// MP2 / 6-31G〜*方法计算。从势能分布图,我们预测在单线亚甲基亚甲硅烷基和丙酮之间形成一个硅烷多环化合物的环加成反应有两个竞争性主导反应途径。第一主要反应途径包括四个步骤:(I)两种反应物(R1 R2)首先通过46.2 kJ / mol的无障碍放热反应形成中间体(INT1); (II)中间体(INT1)然后经由过渡态(TS3)异构化为平面四元环产物(P3),其能垒为47.1kJ / mol; (III)平面四元环产物(P3)进一步与丙酮(R2)反应形成中间体(INT4),该中间体也是40.0kJ / mol的无障碍放热反应; (IV)中间体(INT4)经由过渡态(TS4)异构化为硅多环化合物(P4),其能垒为57.0 kJ / mol。第二主要反应路径包括三个步骤:(I)两种反应物(R1,R2)首先通过0.5 kJ / mol的无障碍放热反应形成四元环中间体(INT2); (Ⅱ)INT2进一步与丙酮(R2)反应形成中间体(INT5),这也是45.4kJ / mol的无障碍放热反应。 (III)中间体(INT5)经由过渡态(TS5)异构化为硅多环化合物(P5),其能垒为49.3kJ / mol。 P4和P5是异构化合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号