首页> 外文期刊>Analytical chemistry >Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models
【24h】

Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models

机译:先进微流细胞和组织培养模型中不同塑料的生物相容性和吸附特性的比较

获取原文
获取原文并翻译 | 示例
       

摘要

Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision-cut liver slices, that are not possible with conventional systems. However, PDMS, a silicone rubber material, is very hydrophobic and tends to exhibit significant adsorption and absorption of hydrophobic drugs and their metabolites. Although glass could be used as an alternative, thermoplastics are better from a cost and fabrication perspective. Thermoplastic polymers (plastics) allow easy surface treatment and are generally transparent and biocompatible. This study focuses on the fabrication of biocompatible microfluidic devices with low adsorption properties from the thermoplastics poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and cyclic olefin copolymer (COC) as alternatives for PDMS devices. Thermoplastic surfaces were oxidized using UV-generated ozone or oxygen plasma to reduce adsorption of hydrophobic compounds. Surface hydrophilicity was assessed over 4 weeks by measuring the contact angle of water on the surface. The adsorption of 7-ethoxycoumarin, testosterone, and their metabolites was also determined after UV-ozone treatment. Biocompatibility was assessed by culturing human hepatoma (HepG2) cells on treated surfaces. Comparison of the adsorption properties and biocompatibility of devices in different plastics revealed that only UV-ozone-treated PC and COC devices satisfied both criteria. This paper lays an important foundation that will help researchers make informed decisions with respect to the materials they select for microfluidic cell-based culture experiments.
机译:微流体技术正在提供通往高级细胞和组织培养模型的新途径,以更好地了解人类生物学和疾病。聚二甲基硅氧烷(PDMS)制成了许多先进的设备,可进行实验,例如使用精密切割的肝脏切片研究药物代谢,而这在常规系统中是不可能的。然而,PDMS是一种硅橡胶材料,具有很高的疏水性,并且倾向于表现出对疏水性药物及其代谢产物的显着吸附和吸收。尽管可以使用玻璃作为替代,但从成本和制造角度来看,热塑性塑料更好。热塑性聚合物(塑料)可以轻松进行表面处理,并且通常是透明的并且具有生物相容性。这项研究的重点是由热塑性聚甲基丙烯酸甲酯(PMMA),聚苯乙烯(PS),聚碳酸酯(PC)和环烯烃共聚物(COC)作为PDMS装置的替代品,从而制造具有低吸附性能的生物相容性微流体装置。使用紫外线产生的臭氧或氧气等离子对热塑性塑料表面进行氧化,以减少疏水性化合物的吸附。通过测量水在表面上的接触角,在4周内评估了表面亲水性。紫外线臭氧处理后,还确定了7-乙氧基香豆素,睾丸激素及其代谢产物的吸附。通过在处理过的表面上培养人肝癌(HepG2)细胞来评估生物相容性。比较设备在不同塑料中的吸附性能和生物相容性表明,只有经紫外线臭氧处理的PC和COC设备才能满足这两个标准。本文奠定了重要的基础,将有助于研究人员针对他们选择的基于微流体细胞的培养实验的材料做出明智的决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号