首页> 外文期刊>Analytical chemistry >Accumulation Mechanism for Metal Chalcogenide Nanoparticles at Hg~(0) Electrodes: Copper Sulfide Example
【24h】

Accumulation Mechanism for Metal Chalcogenide Nanoparticles at Hg~(0) Electrodes: Copper Sulfide Example

机译:Hg〜(0)电极上金属硫族化物纳米粒子的累积机理:硫化铜实例

获取原文
获取原文并翻译 | 示例
       

摘要

Mercury electrodes preconcentrate metal chalcogenide nanoparticles effectively, enabling their detection at submicromolar concentrations (as (sum)chalcogenide) by adsorptive cathodic stripping voltammetry. Understanding the unique behavior of nanoparticle analytes during preconcentration is critical for lowering detection limits and for quantification. A multistep mechanism is proposed on the basis of accumulation experiments with polydisperse copper sulfide (Cu_(x)S) nanoparticles. Particles first diffuse and adsorb at the Hg~(0) surface. When both the electrode and particles have negative surface potentials, this process resembles charge-impeded coagulation, obeying the Schulze-Hardy rule at various electrolyte strengths. Consequently, accumulation rates are surprisingly sensitive to electrolyte concentration. Choosing accumulation potentials where the electrode and particles have opposite surface potentials greatly improves collection efficiency, especially for the smallest particles. After adsorption, particles undergo transformations. One product is a more stable (harder to reduce) form of Cu_(x)S, interpreted to consist of adclusters or adlayers. A very significant (approx0.3 V) negative shift in reduction potential results from this transformation. Loss of analyte to at least one nonelectroactive product is also observed. Loss is greatest for the smallest particles and is sensitive to choice of accumulation potential. To improve accumulation efficiency, accumulation potentials more positive that the potential of zero charge of Hg electrodes are advantageous but care must be taken to remove dissolved chalcogenides under these conditions in order to avoid artifacts.
机译:汞电极可有效地预富集金属硫属元素化物纳米粒子,可通过吸附阴极溶出伏安法在亚微摩尔浓度(如(总)硫属元素化物)下进行检测。了解纳米颗粒分析物在预浓缩过程中的独特行为对于降低检测限和进行定量分析至关重要。基于多分散硫化铜(Cu_(x)S)纳米粒子的积累实验,提出了一种多步机理。粒子首先在Hg〜(0)表面扩散并吸附。当电极和颗粒都具有负表面电势时,此过程类似于电荷受阻的凝结,在各种电解质强度下都遵循Schulze-Hardy规则。因此,累积速率出乎意料地对电解质浓度敏感。在电极和颗粒具有相反的表面电势的情况下选择累积电势会大大提高收集效率,尤其是对于最小的颗粒而言。吸附后,颗粒经历转化。一种产品是更稳定(更难还原)的Cu_(x)S形式,被解释为由辅助剂或辅助剂组成。这种转变导致还原电位产生非常显着的负偏移(约0.3 V)。还观察到分析物损失到至少一种非电活性产物。损失对于最小的颗粒最大,并且对积累潜力的选择敏感。为了提高累积效率,比Hg电极零电荷的电位更有利的累积电位是有利的,但是在这些条件下必须小心去除溶解的硫属元素化物,以避免产生伪影。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号