首页> 外文期刊>ACS applied materials & interfaces >Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes
【24h】

Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes

机译:氧空位诱导的氧化锌锚固石墨碳纳米纤维混合电极的结构,光学和增强的超电容性能

获取原文
获取原文并翻译 | 示例
       

摘要

Zinc oxide (ZnO) nanoparticles (NPs) anchored to carbon nanofiber (CNF) hybrids were synthesized using a facile coprecipitation method. This report demonstrates an effective strategy to intrinsically improve the conductivity and supercapacitive performance of the hybrids by inducing oxygen vacancies. Oxygen deficiency-related defect analyses were performed qualitatively as well as quantitatively using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. All of the analyses clearly indicate an increase in oxygen deficiencies in the hybrids with an increase in the vacuum-annealing temperature. The nonstoichiometric oxygen vacancy is mainly induced via the migration of the lattice oxygen into interstitial sites at elevated temperature (300 degrees C), followed by diffusion into the gaseous phase with further increase in the annealing temperature (600 degrees C) in an oxygen-deficient atmosphere. This induction of oxygen vacancy is corroborated by diffuse reflectance spectroscopy, which depicts the oxygen-vacancy-induced bandgap narrowing of the ZnO NPs within the hybrids. At a current density of 3 A g(-1), the hybrid electrode exhibited higher energy density (119.85 Wh kg(-1)) and power density (19.225 kW kg(-1)) compared to a control ZnO electrode (48.01 Wh kg(-1) and 17.687 kW kg(-1)). The enhanced supercapacitive performance is mainly ascribed to the good interfacial contact between CNF and ZnO, high oxygen deficiency, and fewer defects in the hybrid. Our results are expected to provide new insights into improving the electrochemical properties of various composites/hybrids.
机译:使用一种简便的共沉淀方法合成了锚固在碳纳米纤维(CNF)杂化体上的氧化锌(ZnO)纳米颗粒(NPs)。该报告表明了一种有效的策略,可通过诱导氧空位从本质上提高杂化体的电导率和超电容性能。使用傅里叶变换红外光谱法,能量色散X射线光谱法和X射线光电子能谱法定性和定量地进行了与氧缺乏相关的缺陷分析。所有分析清楚地表明,随着真空退火温度的升高,混合气中的氧气缺乏症有所增加。非化学计量的氧空位主要是由于晶格氧在高温(300摄氏度)下迁移到间隙位置,然后扩散到气相而在缺氧情况下退火温度(600摄氏度)进一步升高而引起的。大气层。漫反射光谱法证实了氧空位的这种诱导,其描绘了氧空位引起的杂化体中ZnO NP的带隙变窄。与对照ZnO电极(48.01 Wh)相比,在3 A g(-1)的电流密度下,混合电极表现出更高的能量密度(119.85 Wh kg(-1))和功率密度(19.225 kW kg(-1))。 kg(-1)和17.687 kW kg(-1))。超级电容性能的提高主要归因于CNF和ZnO之间的良好界面接触,高缺氧性以及杂化物中较少的缺陷。我们的结果有望为改进各种复合材料/混合材料的电化学性能提供新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号