首页> 外文期刊>ACS applied materials & interfaces >Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors
【24h】

Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors

机译:高击穿强度聚合物薄膜电容器的嵌段共聚物定向自组装

获取原文
获取原文并翻译 | 示例
       

摘要

Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E-BD) and dielectric permittivity (epsilon(r)) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E-BD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show similar to 50% enhancement in E-BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E-BD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E-BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.
机译:对于快速充电/放电的新需求,但大功率,轻巧和灵活的电子产品要求使用具有高能量密度的基于聚合物薄膜的固态电容器。常规电池,超级电容器和相关混合技术的充电速度较慢时,薄膜电容器的快速充电/放电速率无法达到微秒级。然而,聚合物膜电容器的当前能量密度不能满足需求的增长,并且可以通过增加聚合物膜的击穿强度(E-BD)和介电常数(ε)来显着提高。在这方面,共挤出的二均聚物组分多层膜已显示出很大的前景,显示出比组分聚合物更高的E-BD。多层薄膜还可以帮助整合除能量存储之外的功能特征,例如增强的光学,机械,热和阻隔性能。在这项工作中,我们报告了完成具有软剪切驱动的高度定向的自组装层状二嵌段共聚物(BCP)的多层,多组分嵌段共聚物介电膜(BCDF),作为这一重要类的自组装材料的一种新颖应用。 PS-b-PMMA模型系统的结果表明,与无序铸造薄膜相比,自组装多层层状BCP薄膜的E-BD增强了50%,表明该分解对BCP的纳米结构高度敏感。 E-BD的增强归因于“阻挡效应”,其中层状嵌段组分之间的多个界面充当了介电层穿透膜的障碍。使用简单的定向自组装策略,E-BD的增加相当于将储能能力提高了一倍以上。这种方法为设计高能量密度介电材料开辟了新的纳米材料范式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号