首页> 外文期刊>ACS applied materials & interfaces >Rethinking Band Bending at the P3HT-TiO2 Interface
【24h】

Rethinking Band Bending at the P3HT-TiO2 Interface

机译:重新思考P3HT-TiO2界面的能带弯曲

获取原文
获取原文并翻译 | 示例
           

摘要

The advancement of solar cell technology necessitates a detailed understanding of material heterojunctions and their interracial properties. In hybrid bulk heterojunction solar cells (HBHJs), light-absorbing conjugated polymers are often interfaced with films of nanostructured TiO2 as a cheaper alternative to conventional inorganic solar cells. The mechanism of photovoltaic action requires photoelectrons in the polymer to transfer into the TiO2, and therefore, polymers are designed with lowest unoccupied molecular orbital (LUMO) levels higher in energy than the conduction band of TiO2 for thermodynamically favorable electron transfer. Currently, the energy level values used to guide solar cell design are referenced from the separated materials, neglecting the fact that upon heterojunction formation material energetics are altered. With spectroelectrochemistry, we discovered that spontaneous charge transfer occurs upon heterojunction formation between poly(3-hexylthiophene) (P3HT) and nanocrystalline TiO2. It was determined that deep trap states (0.5 eV below the conduction band of TiO2) accept electrons from P3HT and form hole polarons in the polymer. This equilibrium charge separation alters energetics through the formation of interfacial dipoles and results in band bending that inhibits desired photoelectron injection into TiO2, limiting HBHJ solar cell performance. X-ray photoelectron spectroscopic studies quantified the resultant vacuum level offset to be 0.8 eV. Further spectroelectrochemical studies indicate that 0.1 eV of this offset occurs in TiO2, whereas the balance occurs in P3HT. New guidelines for improved photocurrent are proposed by tuning the energetics of the heterojunction to reverse the direction of the interfacial dipole, enhancing photoelectron injection.
机译:太阳能电池技术的发展需要对材料异质结及其族间特性进行详细的了解。在混合本体异质结太阳能电池(HBHJ)中,吸光的共轭聚合物通常与纳米结构的TiO2薄膜接触,这是常规无机太阳能电池的廉价替代品。光伏作用的机理要求聚合物中的光电子转移到TiO2中,因此,为了获得热力学上有利的电子转移,聚合物被设计成具有比TiO2导带更高的能量的最低未占据分子轨道(LUMO)能级。当前,用于指导太阳能电池设计的能级值是从分离的材料中引用的,而忽略了异质结形成时材料的能量变化的事实。借助光谱电化学,我们发现聚(3-己基噻吩)(P3HT)与纳米晶TiO2之间的异质结形成会发生自发电荷转移。已确定深陷阱态(低于TiO2导带的0.5 eV)接受来自P3HT的电子并在聚合物中形成空穴极化子。这种平衡电荷的分离通过界面偶极子的形成改变了能量,并导致能带弯曲,从而抑制了向TiO2注入所需的光电子,从而限制了HBHJ太阳能电池的性能。 X射线光电子能谱研究将产生的真空水平偏移量化为0.8 eV。进一步的光谱电化学研究表明,这种偏移的0.1 eV在TiO2中发生,而平衡在P3HT中发生。通过调整异质结的能级以反转界面偶极子的方向,增强光电子注入,提出了改善光电流的新准则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号