...
首页> 外文期刊>Contributions to Plasma Physics >Simulation of direct-current microdischarges for application in electro-thermal class of small satellite propulsion devices
【24h】

Simulation of direct-current microdischarges for application in electro-thermal class of small satellite propulsion devices

机译:用于小型卫星推进装置电热级的直流微放电模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Microdischarges are miniature non-equilibrium plasma discharges with characteristic dimensions of similar to 10's - 100's mu m and relatively high operating pressures of similar to 10's - 100's Torr. Microdischarges possess several unique properties that have been exploited in a number of new applications. We have recently proposed a microdischarge-based electro-thermal class of microthrusters for small satellite propulsion. These devices utilize intense gas heating in microdischarges to preheat a propellant gas stream before it is expanded in a micronozzle to produce thrust; thereby improving specific impulse of the device over a conventional cold gas microthruster. This paper addresses direct-current microdischarge phenomena in a flowing gas stream. A two-dimensional, self-consistent, fluid model of a helium microdischarge in a bulk gas flow is developed. For relatively high current/power levels considered in this study, the microdischarge operates in an abnormal glow mode with positive differential resistivity. Increasing discharge pressures for fixed power and bulk flow rates results in a decrease in charged species densities and the electron and gas temperatures. Also the discharge becomes increasingly constricted with increasing pressures, resulting in a more normal glow mode-like operation. Increasing bulk flow rates results in exactly the same trends as increasing pressures. For given input power and pressure, there exists an optimum flow rate for which the average outlet gas temperature from the discharge is a maximum. An increase in input electrical power results in an almost linear increase in the gas temperatures; this property of microdischarges is the key feature that is exploited in our microdischarge-based thruster concept.
机译:微放电是微型非平衡等离子体放电,其特征尺寸类似于10's-100'sμm,并且具有相对较高的工作压力,类似于'10's-100's Torr。微放电具有一些独特的特性,这些特性已在许多新应用中得到利用。我们最近提出了一种基于微放电的电热类微型推力器,用于小型卫星推进器。这些装置在微放电中利用强烈的气体加热来预热推进气流,然后在微喷嘴中膨胀以产生推力。从而比常规的冷气微型推力器提高了装置的比冲。本文探讨了流动气流中的直流微放电现象。建立了整体气流中氦微放电的二维自洽流体模型。对于本研究中考虑的相对较高的电流/功率水平,微放电以具有正差分电阻率的异常辉光模式工作。对于固定功率和整体流量,增加放电压力会导致带电物质密度以及电子和气体温度降低。而且,放电随着压力的增加而越来越受限制,从而导致更正常的类似辉光模式的操作。增加整体流量会导致与增加压力完全相同的趋势。对于给定的输入功率和压力,存在最佳流量,对于该流量,排出的平均出口气体温度最大。输入电功率的增加导致气体温度几乎呈线性增加;微放电的这种特性是我们基于微放电的推进器概念所利用的关键特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号