首页> 外文期刊>Physical review >Many-particle Hamiltonian For Open Systems With Full Coulomb Interaction: Application To Classical And Quantum Time-dependent Simulations Of Nanoscale Electron Devices
【24h】

Many-particle Hamiltonian For Open Systems With Full Coulomb Interaction: Application To Classical And Quantum Time-dependent Simulations Of Nanoscale Electron Devices

机译:具有完全库仑相互作用的开放系统的多粒子哈密顿量:在纳米电子器件的经典和量子时变模拟中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

A many-particle Hamiltonian for a set of particles with Coulomb interaction inside an open system is described without any perturbative or mean-field approximation. The boundary conditions of the Hamiltonian on the borders of the open system [in the real three-dimensional (3D) space representation] are discussed in detail to include the Coulomb interaction between particles inside and outside of the open system. The many-particle Hamiltonian provides the same electrostatic description obtained from the image-charge method, but it has the fundamental advantage that it can be directly implemented into realistic (classical or quantum) electron device simulators via a 3D Poisson solver. Classically, the solution of this many-particle Hamiltonian is obtained via a coupled system of Newton-type equations with a different electric field for each particle. The quantum-mechanical solution of this many-particle Hamiltonian is achieved using the quantum (Bohm) trajectory algorithm [X. Oriols, Phys. Rev. Lett. 98, 066803 (2007)]. The computational viability of the many-particle algorithms to build powerful nanoscale device simulators is explicitly demonstrated for a (classical) double-gate field-effect transistor and a (quantum) resonant tunneling diode. The numerical results are compared with those computed from time-dependent mean-field algorithms showing important quantitative differences.
机译:描述了在开放系统内部具有库仑相互作用的一组粒子的多粒子哈密顿量,而没有任何扰动或均值场近似。详细讨论了哈密顿系统在开放系统边界上的边界条件[在真实的三维(3D)空间表示中],以包括开放系统内部和外部粒子之间的库仑相互作用。多粒子哈密顿量提供了从图像电荷法获得的相同的静电描述,但它的基本优势是可以通过3D泊松解算器将其直接实现为现实的(经典或量子)电子设备模拟器。经典地,该多粒子哈密顿量的解是通过牛顿型方程的耦合系统获得的,其中每个粒子具有不同的电场。这种多粒子哈密顿量的量子力学解决方案是使用量子(Bohm)轨迹算法[X。黄莺,物理学。牧师98,066803(2007)]。对于(经典)双栅场效应晶体管和(量子)谐振隧穿二极管,明确证明了构建强大的纳米级设备模拟器的多粒子算法的计算可行性。数值结果与从时间相关的平均场算法计算得出的结果进行了比较,显示出重要的定量差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号