首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Electronic structures and quantum capacitance of monolayer and multilayer graphenes influenced by Al, B, N and P doping, and monovacancy: Theoretical study
【24h】

Electronic structures and quantum capacitance of monolayer and multilayer graphenes influenced by Al, B, N and P doping, and monovacancy: Theoretical study

机译:Al,B,N,P掺杂和单空位对单层和多层石墨烯电子结构和量子电容的影响:理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene has been extensively explored as an electrode material in supercapacitors because of its large surface area and high electronic conductivity. By designing diverse morphologies and doping graphene with certain elements, the properties of graphene can be efficiently modified. We present the influence of Al, B, N and P doping, monovacancy and multilayer graphene structures on stability, electronic structures and quantum capacitance, by applying density functional theory calculations. The electrode quantum capacitances are substantially modified due to doping, the presence of monovacancy, and interaction between layers occurred in multilayer structures. Our calculations suggest that the monolayer graphene with monovacancy, the monolayer and multilayer graphene structures with nitrogen doped around the monovacancy, and multilayer graphene structure with aluminum doped could provide substantial change of quantum capacitance. However, the structure stability could be challenging. The interaction between layers could lower quantum capacitances compared to those of the monolayer structures with the same dopant elements. Moreover, the association of monovacancy and nitrogen doping of a single layer structure could lead to as high quantum capacitance as similar to 80 mu F/cm(2). This work suggests the possibility to enhance quantum capacitance of the graphene-based electrodes using the combination effect of doping, vacancy defect and stacking layers. (C) 2016 Elsevier Ltd. All rights reserved.
机译:石墨烯由于其大的表面积和高的电导率而被广泛地用作超级电容器的电极材料。通过设计各种形态并用某些元素掺杂石墨烯,可以有效地改变石墨烯的性能。通过应用密度泛函理论计算,我们介绍了Al,B,N和P掺杂,单空位和多层石墨烯结构对稳定性,电子结构和量子电容的影响。电极量子电容由于掺杂,单空位的存在以及在多层结构中发生的层之间的相互作用而基本上被修改。我们的计算表明,具有单空位的单层石墨烯,在单空位周围掺杂氮的单层和多层石墨烯结构以及掺杂铝的多层石墨烯结构可以提供量子电容的实质性变化。但是,结构稳定性可能具有挑战性。与具有相同掺杂元素的单层结构相比,层之间的相互作用可以降低量子电容。此外,单空位和氮掺杂的单层结构的关联可能导致与80μF / cm(2)相似的高量子电容。这项工作提出了利用掺杂,空位缺陷和堆叠层的组合效应来增强石墨烯基电极的量子电容的可能性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号