...
首页> 外文期刊>Chemistry: A European journal >Cyanation of aryl bromides with K _4[Fe(CN) _6] catalyzed by dichloro[bis{1-(dicyclohexylphosphanyl)piperidine}]palladium, a molecular source of nanoparticles, and the reactions involved in the catalyst-deactivation processes
【24h】

Cyanation of aryl bromides with K _4[Fe(CN) _6] catalyzed by dichloro[bis{1-(dicyclohexylphosphanyl)piperidine}]palladium, a molecular source of nanoparticles, and the reactions involved in the catalyst-deactivation processes

机译:二氯[双{1-(1-(二环己基膦酰基)哌啶}]钯,一种纳米颗粒的分子来源,催化K_4 [Fe(CN)_6]芳基溴化物的氰化反应,以及涉及催化剂失活过程的反应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Dichloro[bis{1-(dicyclohexylphosphanyl)piperidine}]palladium [(P{(NC _5H _(10))(C _6H _(11)) _2}) _2PdCl _2] (1) is a highly active and generally applicable C-C cross-coupling catalyst. Apart from its high catalytic activity in Suzuki, Heck, and Negishi reactions, compound 1 also efficiently converted various electronically activated, nonactivated, and deactivated aryl bromides, which may contain fluoride atoms, trifluoromethane groups, nitriles, acetals, ketones, aldehydes, ethers, esters, amides, as well as heterocyclic aryl bromides, such as pyridines and their derivatives, or thiophenes into their respective aromatic nitriles with K _4[Fe(CN) _6] as a cyanating agent within 24 h in NMP at 140 °C in the presence of only 0.05 mol % catalyst. Catalyst-deactivation processes showed that excess cyanide efficiently affected the molecular mechanisms as well as inhibited the catalysis when nanoparticles were involved, owing to the formation of inactive cyanide complexes, such as [Pd(CN) _4] ~(2-), [(CN) _3Pd(H)] ~(2-), and [(CN) _3Pd(Ar)] ~(2-). Thus, the choice of cyanating agent is crucial for the success of the reaction because there is a sharp balance between the rate of cyanide production, efficient product formation, and catalyst poisoning. For example, whereas no product formation was obtained when cyanation reactions were examined with Zn(CN) _2 as the cyanating agent, aromatic nitriles were smoothly formed when hexacyanoferrate(II) was used instead. The reason for this striking difference in reactivity was due to the higher stability of hexacyanoferrate(II), which led to a lower rate of cyanide production, and hence, prevented catalyst-deactivation processes. This pathway was confirmed by the colorimetric detection of cyanides: whereas the conversion of β-solvato-α-cyanocobyrinic acid heptamethyl ester into dicyanocobyrinic acid heptamethyl ester indicated that the cyanide production of Zn(CN) _2 proceeded at 25 °C in NMP, reaction temperatures of >100 °C were required for cyanide production with K _4[Fe(CN) _6]. Mechanistic investigations demonstrate that palladium nanoparticles were the catalytically active form of compound 1. A balancing act: Compound 1 (see scheme) is a highly active cyanation catalyst. Furthermore, a sharp balance between the rates of cyanide generation, efficient product formation, and catalyst deactivation owing to excess cyanide was observed in deactivation processes.
机译:二氯[双{1-(二环己基膦酰基)哌啶}]钯[[P {(NC _5H _(10)(C _6H _(11)_2})_2PdCl _2](1)是高活性且通用的CC交叉偶联催化剂。除了在Suzuki,Heck和Negishi反应中具有高催化活性外,化合物1还有效地转化了各种电子活化,非活化和失活的芳基溴化物,其中可能包含氟原子,三氟甲烷基团,腈,缩醛,酮,醛,醚,酯,酰胺以及杂环芳基溴化物(例如吡啶及其衍生物)或噻吩在NMP中在140°C下于24小时内在KMP_4 [Fe(CN)_6]作为氰化剂的状态下转变成各自的芳香腈。仅存在0.05mol%的催化剂。催化剂失活过程表明,由于形成了惰性氰化物络合物,例如[Pd(CN)_4]〜(2-),[( CN)_3Pd(H)]〜(2-)和[(CN)_3Pd(Ar)]〜(2-)。因此,氰化剂的选择对于反应的成功至关重要,因为在氰化物的产生速率,有效的产物形成和催化剂中毒之间存在着急剧的平衡。例如,当用Zn(CN)_2作为氰化剂检查氰化反应时,没有形成产物,而当使用六氰合铁酸盐(II)时,则平滑地形成了芳香腈。反应性显着差异的原因是由于六氰合铁酸盐(II)的较高稳定性,这导致氰化物生成速率较低,因此阻止了催化剂失活过程。比色法检测氰化物证实了该途径:而β-溶剂化-α-氰基白屈菜酸七甲酯向二氰基白屈菜酸七甲酯的转化表明,在NMP中,Zn(CN)_2的氰化物生产在反应过程中进行。生产K _4 [Fe(CN)_6]所需的氰化物温度要求> 100°C。机理研究表明,钯纳米粒子是化合物1的催化活性形式。平衡作用:化合物1(参见方案)是高活性氰化催化剂。此外,在失活过程中观察到氰化物生成速率,有效产物形成和由于过量氰化物引起的催化剂失活之间的急剧平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号