首页> 外文学位 >I. Multicatalysis: Development of a Bismuth(III) triflate-catalyzed Nucleophilic addition/ Hydrofunctionalization Reaction in the Synthesis of Complex Heterocycles II. C--H Arylation of Arenes and Heteroarenes with Palladium-Carboxylate Catalysts: Identification of the Catalyst Resting State and the Crucial Role of Pivalate Ligand in Stabilization of the Catalyst III. C--H Arylation of Heteroarenes with Palladium-Carboxylate Catalysts: Importance of Phosphine Ligand for Basic Heteroarene Substrates IV. C--H Arylation of Heteroarenes with Palladium-Carboxylate Catalysts: Effect of the Properties of Basic Heteroarene Substrates on Direct Arylations.
【24h】

I. Multicatalysis: Development of a Bismuth(III) triflate-catalyzed Nucleophilic addition/ Hydrofunctionalization Reaction in the Synthesis of Complex Heterocycles II. C--H Arylation of Arenes and Heteroarenes with Palladium-Carboxylate Catalysts: Identification of the Catalyst Resting State and the Crucial Role of Pivalate Ligand in Stabilization of the Catalyst III. C--H Arylation of Heteroarenes with Palladium-Carboxylate Catalysts: Importance of Phosphine Ligand for Basic Heteroarene Substrates IV. C--H Arylation of Heteroarenes with Palladium-Carboxylate Catalysts: Effect of the Properties of Basic Heteroarene Substrates on Direct Arylations.

机译:I.多催化作用:在复杂的杂环化合物的合成中三氟甲磺酸铋(III)催化的亲核加成/加氢官能化反应的发展。羰基钯催化剂对芳烃和杂芳烃的CH-H芳基化反应:催化剂静止状态的鉴定以及新戊酸酯配体在稳定催化剂中的关键作用III。羰基钯催化剂催化杂芳烃的CH芳基化:膦配体对基础杂芳烃基质的重要性IV。杂芳烃与钯-羧酸酯的CH芳基化:碱性杂芳烃底物性能对直接芳基化的影响。

获取原文
获取原文并翻译 | 示例

摘要

Chapter 1. One of the major drawbacks to traditional syntheses is the requirement for iterative synthesis, which is not only chemically inefficient and time-consuming, but environmentally unfriendly due to waste generated during purification procedures. A way to circumvent problems posed by iterative synthesis is through the development of multicatalytic protocols, in which multiple, distinct synthetic steps can be performed in one reaction pot. Saturated 5-membered oxygen- and nitrogen-containing heterocycles are extremely common structural motifs in many biologically important molecules---a multicatalytic synthetic strategy for their syntheses would be of incredible use. To that end, a bismuth(III) triflate-catalyzed hydroalkoxylation procedure was developed for the synthesis of substituted tetrahydrofurans. This operationally simple method successfully generated complex tetrahyrofurans in moderate to good diastereoselectivity with good functional group tolerance. An analogous hydroamination of non-basic N-tosyl amines was also developed and featured similar levels of diastereoselectivity and functional group compatibility. The methodology was part of a multicatalytic strategy combining nucleophilic additions to aliphatic aldehydes and N-tosyl imines to quickly generate complex 5-membered heterocycles in moderate to good diastereoselectivity.;Chapter 2. The palladium-pivalate catalytic system has emerged as one of the most efficient and general catalysts for the C--H arylation of arenes and heteroarenes with haloarene donors. Despite the importance of this class of catalytic reactions, the mechanistic understanding is limited by the lack of direct experimental evidence, especially in the context of Lewis basic heteroarene substrates. To address this problem, we chose the catalytic C--H arylation of 2-methylthiazole as a representative reaction for a detailed mechanistic study. Direct kinetic evidence was provided for the involvement of a palladium(II) pivalate species in the C--H arylation of heteroarenes by identifying the resting state of the catalyst---complex 2a [(Cy 3P)(2-methylthiazole)Pd(Ph)(OPiv)]---and examining its reactivity. The pivalate ligand, in comparison to acetate, does not yield faster rates of C--H activation, but instead stabilizes the resting state of the catalyst against decomposition to inactive palladium species. An experimentally supported rationale for the superiority of the palladium(II) pivalate system in C--H arylation reactions was provided.;Chapter 3. The choice of phosphine ligand is an incredibly important aspect of catalyst design in many metal-catalyzed transformations, including direct arylations and cross-couplings. A relatively unexplored area of study was the effect of the phosphine ligand on the C--H metalation step of palladium-catalyzed direct arylation reactions. Through our studies and related studies in the literature, we can conclude that the phosphine ligand is generally deactivating toward deprotonative metalation (CMD/EMD) pathways, however the phosphine ligand is necessary in the C5 arylation of triazole and C2 arylation of thiazole, as well as substituted pyridines. In the case of azoles, arylation probably proceeds via a mechanism different to that of C5 arylations; the phosphine ligand stabilizes catalytic intermediates, affording efficient C2 arylation of azoles. In the case of pyridine, the major issue is that of catalyst decomposition; in approaching catalyst design, one must balance tuning of the reactivity of the palladium catalyst toward C--H metalation versus protecting the catalyst during prolonged reaction times and high reaction temperatures. Two common ligands in palladium catalysis, Cy3P and t-Bu3P, were directly compared in terms of their interaction with basic substrates. While complexes ligated to a single Cy3P ligand were able to accommodate basic heteroarenes in the palladium coordination sphere, complexes with the bulkier t-Bu3P ligand behaved very differently, which could have important ramifications on future catalyst design.;Chapter 4. Heteroaromatic substrates have typically provided challenges for the development of direct arylation protocols. However, how the properties of the substrate affect the rate-limiting metalation step of palladium-catalyzed direct arylation reactions was mostly unknown. Thus, we correlated the rates of C--H metalation of azoles and substituted pyridines with various intrinsic properties of heterocycles, such as aromaticity, and pK a. It was found that for the C5 arylation of azoles, a stronger correlation on the rate of metalation with pKa was observed. Degree of aromaticity appears to have little correlation with the rates of C--H metalation of azoles and pyridines.
机译:第1章传统合成的主要缺点之一是需要进行迭代合成,这不仅化学效率低且耗时,而且由于纯化过程中产生的废物而对环境不友好。规避由迭代合成引起的问题的方法是通过开发多催化方案,其中可以在一个反应​​罐中执行多个不同的合成步骤。在许多生物学上重要的分子中,饱和的5元含氧和氮杂环是极为常见的结构基序-一种合成多催化合成的策略将具有不可思议的用途。为此,开发了三氟甲磺酸铋(III)催化的加氢烷氧基化方法,用于合成取代的四氢呋喃。这种操作简单的方法成功地以中等至良好的非对映选择性以及良好的官能团耐受性成功生成了复杂的四氢呋喃。还开发了非碱性N-甲苯磺胺的类似加氢胺,其非对映选择性和官能团相容性水平相似。该方法是多催化策略的一部分,该策略结合了对脂肪族醛和N-甲苯磺酰基亚胺的亲核加成,以中等至良好的非对映选择性快速生成复杂的5元杂环。;第2章。新戊酸钯催化体系已成为最重要的催化体系之一。芳烃和杂芳烃与卤代芳烃供体的CH芳基化反应的高效和通用催化剂。尽管这类催化反应非常重要,但缺乏直接的实验证据限制了对机理的理解,尤其是在路易斯碱性杂芳烃底物的情况下。为了解决这个问题,我们选择了2-甲基噻唑的催化CH芳基化作为代表反应进行详细的机理研究。通过鉴定催化剂-复合物2a [(Cy 3P)(2-甲基噻唑)Pd()的静止状态,提供了动力学新证据表明新戊二酸钯(II)参与杂芳烃的CH芳基化反应。 Ph)(OPiv)] ---并检查其反应性。与乙酸盐相比,新戊酸酯配体不会产生更快的C-H活化速率,而是可以稳定催化剂的静止状态,以防止分解为惰性钯物种。提供了实验证明的新戊酸钯(II)体系在CH芳基化反应中的优越性。;第3章。在许多金属催化的转化中,膦配体的选择是催化剂设计不可思议的重要方面,包括直接芳基化和交叉偶联。相对未开发的研究领域是膦配体对钯催化的直接芳基化反应的CH金属化步骤的影响。通过我们的研究和相关文献研究,我们可以得出结论,膦配体通常会向去质子化金属化(CMD / EMD)途径失活,但是膦配体在三唑的C5芳基化和噻唑的C2芳基化中也是必需的作为取代的吡啶。就唑类而言,芳基化可能通过不同于C5芳基化的机理进行。膦配体可稳定催化中间体,提供吡咯的有效C2芳基化作用。就吡啶而言,主要问题是催化剂分解。在接近催化剂的设计中,必须在延长的反应时间和较高的反应温度之间平衡调节钯催化剂对CH金属化的反应性与保护催化剂。直接比较了钯催化中的两个常见配体Cy3P和t-Bu3P与碱性底物的相互作用。虽然与单个Cy3P配体连接的复合物能够在钯配位体中容纳碱性杂芳烃,但具有较大体积的t-Bu3P配体的复合物的行为却大不相同,这可能对未来的催化剂设计产生重要影响。;第4章。杂芳族底物通常具有为直接芳基化协议的发展提出了挑战。但是,衬底的性能如何影响钯催化的直接芳基化反应的限速金属化步骤,目前尚不清楚。因此,我们将吡咯和取代吡啶的CH的金属化速率与杂环的各种固有特性(例如芳香性和pKa)相关联。发现对于唑的C5芳基化,观察到与pKa的金属化速率更强的相关性。芳香度似乎与唑类和吡啶类化合物的C–H金属化速率几乎没有关系。

著录项

  • 作者

    Tundel, Rachel E.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 255 p.
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:28

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号