首页> 外文期刊>Biomaterials >Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly
【24h】

Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly

机译:具有形状记忆特性的自修复超分子生物弹性体,通过模块化组装作为生物医学应用的多功能平台

获取原文
获取原文并翻译 | 示例
           

摘要

Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers "exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired. (C) 2016 Elsevier Ltd. All rights reserved.
机译:由于传统生物材料(如热固性弹性体)缺乏对生物刺激的响应性,并且难以整合生物功能,因此模仿自然功能对于传统生物材料(如热固性弹性体)的作用受到限制。此外,由不可逆的共价键断裂引起的传统热固性弹性体的机械断裂将导致它们的性能永久丧失。为了克服这些挑战,可降解的自修复超分子生物弹性体是通过弹性聚癸二酸甘油酯(PGS)主链和多个氢键合的脲基-嘧啶酮(UPy)移植物设计的。这些超分子弹性聚合物“由于动态的超分子相互作用而具有高效的自我修复,快速的形状记忆能力和高度可调的机械性能,并且在体外具有良好的生物相容性,在体内具有温和的宿主反应。通过组合方法,这些超分子生物弹性体已进一步组装成一个多功能平台,以扩展其在不同生物医学领域中的应用,包括具有形状记忆能力和各向异性机械特性的复杂3D支架,通过逐层技术控制的药物递送模型,表面通过物理修饰的抗菌复合材料,以及通过掺入不同的载有细胞的自愈膜的空间定向细胞共培养系统,证明了它们在许多需要动态特性和生物学功能的生物医学应用中作为构建基块的潜力。 )2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号