...
首页> 外文期刊>Biochemistry >Nitrite Reductase Activity of Rat and Human Xanthine Oxidase, Xanthine Dehydrogenase, and Aldehyde Oxidase: Evaluation of Their Contribution to NO Formation in Vivo
【24h】

Nitrite Reductase Activity of Rat and Human Xanthine Oxidase, Xanthine Dehydrogenase, and Aldehyde Oxidase: Evaluation of Their Contribution to NO Formation in Vivo

机译:大鼠和人黄嘌呤氧化酶,黄嘌呤脱氢酶和醛氧化酶的亚硝酸盐还原酶活性:评估它们对体内一氧化氮形成的贡献。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nitrite is presently considered a NO storage form that can be made available, through its one-electron reduction, to maintain NO formation under hypoxia/anoxia. The molybdoenzymes xanthine oxidase/dehydrogenase (XO/XD) and aldehyde oxidase (AO) are two of the most promising mammalian nitrite reductases, and in this work, we characterized NO formation by rat and human XO/XD and AO. This is the first characterization of human enzymes, and our results support the employment of rat liver enzymes as suitable models of the human counterparts. A comprehensive kinetic characterization of the effect of pH on XO and AO-catalyzed nitrite reduction showed that the enzymes specificity constant for nitrite increase 8-fold, while the K-m(NO2-) decrease 6-fold, when the pH decreases from 7.4 to 6.3. These results demonstrate that the ability of XO/AO to trigger NO formation would be greatly enhanced under the acidic conditions characteristic of ischemia. The dioxygen inhibition was quantified, and the KiO(2) values found (24.3-48.8 mu M) suggest that in vivo NO formation would be fine-tuned by dioxygen availability. The potential in vivo relative physiological relevance of XO/XD/AO-dependent pathways of NO formation was evaluated using HepG(2) and HMEC cell lines subjected to hypoxia. NO formation by the cells was found to be pH-, nitrite-, and dioxygen-dependent, and the relative contribution of XO/XD plus AO was found to be as high as 50%. Collectively, our results supported the possibility that XO/XD and AO can contribute to NO generation under hypoxia inside a living human cell. Furthermore, the molecular mechanism of XO/AO-catalyzed nitrite reduction was revised.
机译:亚硝酸盐目前被认为是一种NO储存形式,通过其单电子还原可以使其在缺氧/缺氧条件下保持NO的形成。钼酶黄嘌呤氧化酶/脱氢酶(XO / XD)和醛氧化酶(AO)是最有前途的哺乳动物亚硝酸还原酶中的两种,在这项工作中,我们表征了大鼠和人XO / XD和AO的NO形成。这是人类酶的首次表征,我们的研究结果支持采用大鼠肝酶作为人类对应酶的合适模型。 pH值对XO和AO催化亚硝酸盐还原的影响的综合动力学表征表明,当pH值从7.4降低到6.3时,酶对亚硝酸盐的特异性常数增加8倍,而Km(NO2-)降低6倍。 。这些结果表明,在缺血性的酸性条件下,XO / AO触发NO形成的能力将大大增强。量化了对双氧的抑制作用,发现的KiO(2)值(24.3-48.8μM)表明,体内的NO形成将通过双氧的可用性进行微调。潜在的体内相对生理相关性的XO / XD / AO依赖的NO形成途径使用HepG(2)和HMEC细胞系进行低氧评估。发现细胞形成的NO依赖于pH,亚硝酸盐和双氧,并且发现XO / XD和AO的相对贡献高达50%。总的来说,我们的研究结果支持了XO / XD和AO在人体内低氧条件下可促进NO生成的可能性。此外,还修改了XO / AO催化亚硝酸盐还原的分子机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号