...
首页> 外文期刊>Biochemistry >Tryptophan 697 Modulates Hydride and Interflavin Electron Transfer in Human Methionine Synthase Reductase
【24h】

Tryptophan 697 Modulates Hydride and Interflavin Electron Transfer in Human Methionine Synthase Reductase

机译:色氨酸697调节人类蛋氨酸合酶还原酶中的氢化物和黄素间电子转移

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Human methionine synthase reductase (MSR), a diflavin oxidoreductase, plays a vital role in methionine and folate metabolism by sustaining methionine synthase (MS) activity. MSR catalyzes the oxidation of NADPH and shuttles electrons via its FAD and FMN cofactors to inactive MScob(II)alamin. A conserved aromatic residue (Trp697) positioned next to the FAD isoalloxazine ring controls nicotinamide binding and catalysis in related flavoproteins. We created four MSR mutants (W697S, W697H, S698Δ, and S698A) and studied their associated kinetic behavior. Multiwavelength stopped-flow analysis reveals that NADPH reduction of the C-terminal Ser698 mutants occurs in three resolvable kinetic steps encompassing transfer of a hydride ion to FAD, semiquinone formation (indicating FAD to FMN electron transfer), and slow flavin reduction by a second molecule of NADPH. Corresponding experiments with the W697 mutants show a two-step flavin reduction without an observable semiquinone intermediate, indicating that W697 supports FAD to FMN electron transfer. Accelerated rates of FAD reduction, steady-state cytochrome c~(3+) turnover, and uncoupled NADPH oxidation in the S698Δ and W697H mutants may be attributed to a decrease in the energy barrier for displacement of W697 by NADPH. Binding of NADP~+, but not 2′,5′-ADP, is tighter for all mutants than for native MSR. The combined studies demonstrate that while W697 attenuates hydride transfer, it ensures coenzyme selectivity and accelerates FAD to FMN electron transfer. Moreover, analysis of analogous cytochrome P450 reductase (CPR) variants points to key differences in the driving force for flavin reduction and suggests that the conserved FAD stacking tryptophan residue in CPR also promotes interflavin electron transfer.
机译:人蛋氨酸合酶还原酶(MSR)是一种二黄素氧化还原酶,通过维持蛋氨酸合酶(MS)活性,在蛋氨酸和叶酸代谢中起着至关重要的作用。 MSR催化NADPH的氧化,并通过其FAD和FMN辅因子将电子穿梭到惰性MScob(II)阿拉明中。 FAD异恶嗪环旁边的保守芳香族残基(Trp697)控制烟酰胺在相关黄素蛋白中的结合和催化作用。我们创建了四个MSR突变体(W697S,W697H,S698Δ和S698A),并研究了它们的相关动力学行为。多波长停止流分析显示C末端Ser698突变体的NADPH还原发生在三个可解决的动力学步骤中,包括氢化物离子向FAD的转移,半醌的形成(指示FAD向FMN的电子转移)以及第二分子的黄素缓慢还原NADPH。使用W697突变体进行的相应实验表明,在没有可观察到的半醌中间体的情况下,黄酮的两步还原反应表明W697支持FAD到FMN的电子转移。在S698Δ和W697H突变体中,FAD减少的速率加快,稳态细胞色素c〜(3+)转换和NADPH的未偶联氧化可能归因于NADPH取代W697的能垒降低。与天然MSR相比,对于所有突变体而言,NADP〜+而不是2',5'-ADP的结合都更紧密。合并的研究表明,尽管W697减弱了氢化物的转移,但它确保了辅酶的选择性并加速了FAD到FMN的电子转移。此外,对类似的细胞色素P450还原酶(CPR)变体的分析指出了黄素减少的驱动力的关键差异,并表明CPR中保守的FAD堆积色氨酸残基也促进了黄素间电子转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号