...
首页> 外文期刊>The FEBS journal >A kinetic model linking protein conformational motions, interflavin electron transfer and electron flux through a dual-flavin enzyme - simulating the reductase activity of the endothelial and neuronal nitric oxide synthase flavoprotein domains
【24h】

A kinetic model linking protein conformational motions, interflavin electron transfer and electron flux through a dual-flavin enzyme - simulating the reductase activity of the endothelial and neuronal nitric oxide synthase flavoprotein domains

机译:通过双黄素酶连接蛋白质构象运动,黄素间电子转移和电子通量的动力学模型-模拟内皮和神经元一氧化氮合酶黄素蛋白结构域的还原酶活性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

NADPH-dependent dual-flavin enzymes provide electrons in many redox reactions, although the mechanism responsible for regulating their electron flux remains unclear. We recently proposed a four-state kinetic model that links the electron flux through a dual-flavin enzyme to its rates of interflavin electron transfer and FMN domain conformational motion [Stuehr DJ et al. (2009) FEBS J 276, 3959-3974]. In the present study, we ran computer simulations of the kinetic model to determine whether it could fit the experimentally-determined, pre-steady-state and steady-state traces of electron flux through the neuronal and endothelial NO synthase flavoproteins (reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, respectively) to cytochrome c. We found that the kinetic model accurately fitted the experimental data. The simulations gave estimates for the ensemble rates of interflavin electron transfer and FMN domain conformational motion in the reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, provided the minimum rate boundary values, and predicted the concentrations of the four enzyme species that cycle during catalysis. The findings of the present study suggest that the rates of interflavin electron transfer and FMN domain conformational motion are counterbalanced such that both processes may limit electron flux through the enzymes. Such counterbalancing would allow a robust electron flux at the same time as keeping the rates of interflavin electron transfer and FMN domain conformational motion set at relatively slow levels.
机译:NADPH依赖的双黄素酶可在许多氧化还原反应中提供电子,尽管调节其电子通量的机理尚不清楚。我们最近提出了一种四态动力学模型,该模型将通过双黄素酶的电子通量与其黄素间电子转移速率和FMN域构象运动联系起来[Stuehr DJ等。 (2009)FEBS J 276,3959-3974]。在本研究中,我们对动力学模型进行了计算机模拟,以确定它是否适合通过神经元和内皮NO合酶黄素蛋白(神经元的还原酶结构域)通过实验确定的,稳态前和稳态下的电子通量。一氧化氮合酶和内皮型一氧化氮合酶)。我们发现动力学模型准确地拟合了实验数据。该模拟给出了神经元一氧化氮合酶和内皮型一氧化氮合酶的还原酶结构域中黄素间电子转移和FMN结构域构象运动的整体速率的估计值,提供了最小速率边界值,并预测了循环的四种酶的浓度在催化过程中。本研究的发现表明黄素间电子转移和FMN结构域构象运动的速率是平衡的,因此这两个过程都可能限制通过酶的电子通量。这种平衡将在保持黄素间电子转移速率和FMN域构象运动速率保持在相对较低水平的同时,使电子通量稳定。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号