首页> 外文期刊>Biochemistry >Kinetic and structural analysis of active site mutants of monofunctional NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Saccharomyces cerevisiae
【24h】

Kinetic and structural analysis of active site mutants of monofunctional NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Saccharomyces cerevisiae

机译:酿酒酵母单功能NAD依赖的5,10-亚甲基四氢叶酸脱氢酶的活性位点突变体的动力学和结构分析

获取原文
获取原文并翻译 | 示例
           

摘要

5,10-Methylenetetrahydrofolate dehydrogenase (MTD) catalyzes the reversible oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate. This reaction is critical for the supply of one-carbon units at the required oxidation states for the synthesis of purines and dTMP. For most MTDs, dehydrogenase activity is co-located with a methenyl-THF cyclohydrolase activity as part of bifunctional or trifunctional enzyme. The yeast Saccharonzyces cerevisiae contains a monofunctional NAD(+)-dependent 5,10-methylenetetrahydrofolate dehydrogenase (yMTD). Kinetic, crystallographic, and mutagenesis studies were conducted to identify critical residues in order to gain further insight into the reaction mechanism of this enzyme and its apparent lack of cyclohydrolase activity. Hydride transfer was found to be rate-limiting for the oxidation of methylenetetrahydrofolate by kinetic isotope experiments (V-H/V-D = 3.3), and the facial selectivity of the hydride transfer to NAD+ was determined to be Pro-R (A-specific). Model building based on the previously solved structure of yMTD with bound NAD cofactor suggested a possible role for three conserved amino acids in substrate binding or catalysis: Glu121, Cys150, and Thr15l. Steady-state kinetic measurements of mutant enzymes demonstrated that Glu121 and Cys150 were essential for dehydrogenase activity, whereas Thr15l allowed some substitution. Our results are consistent with a key role for Glu121 in correctly binding the folate substrate; however, the exact role of C150 is unclear. Single mutants Thr57Lys and Tyr98Gln and double mutant T57K/Y98Q were prepared to test the hypothesis that the lack of cyclohydrolase activity in yMTD was due to the substitution of a conserved Lys/Gln pair found in bifunctional MTDs. Each mutant retained dehydrogenase activity, but no cyclohydrolase activity was detected.
机译:5,10-亚甲基四氢叶酸脱氢酶(MTD)催化5,10-亚甲基四氢叶酸可逆氧化为5,10-亚甲基四氢叶酸。该反应对于在嘌呤和dTMP的合成所需的氧化态下提供一碳单元至关重要。对于大多数MTD,作为双功能或三功能酶的一部分,脱氢酶活性与亚甲基THF环水解酶活性共存。酵母酿酒酵母包含单功能NAD(+)依赖的5,10-亚甲基四氢叶酸脱氢酶(yMTD)。进行了动力学,晶体学和诱变研究,以鉴定关键残基,以进一步了解该酶的反应机理及其明显缺乏环水解酶活性。通过动力学同位素实验发现氢化物转移限制了亚甲基四氢叶酸的氧化速率(V-H / V-D = 3.3),氢化物转移至NAD +的表面选择性被确定为Pro-R(A特异性)。基于先前与结合的NAD辅因子结合的yMTD解析结构的模型构建表明,三种保守氨基酸在底物结合或催化中可能发挥作用:Glu121,Cys150和Thr15l。突变酶的稳态动力学测量表明,Glu121和Cys150对于脱氢酶活性至关重要,而Thr15l允许一些取代。我们的结果与Glu121在正确结合叶酸底物方面的关键作用相一致。但是,C150的确切作用尚不清楚。准备单突变体Thr57Lys和Tyr98Gln以及双突变体T57K / Y98Q,以测试以下假设:yMTD中缺乏环水解酶活性是由于双功能MTD中存在保守的Lys / Gln对的取代。每个突变体保留脱氢酶活性,但未检测到环水解酶活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号