首页> 外文期刊>Computational optimization and applications >Cooperation and competition in multidisciplinary optimization: Application to the aero-structural aircraft wing shape optimization
【24h】

Cooperation and competition in multidisciplinary optimization: Application to the aero-structural aircraft wing shape optimization

机译:多学科优化中的合作与竞争:在航空结构飞机机翼形状优化中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

This article aims to contribute to numerical strategies for PDE-constrained multiobjective optimization, with a particular emphasis on CPU-demanding computational applications in which the different criteria to be minimized (or reduced) originate from different physical disciplines that share the same set of design variables. Merits and shortcuts of the most-commonly used algorithms to identify, or approximate, the Pareto set are reviewed, prior to focusing on the approach by Nash games. A strategy is proposed for the treatment of two-discipline optimization problems in which one discipline, the primary discipline, is preponderant, or fragile. Then, it is recommended to identify, in a first step, the optimum of this discipline alone using the whole set of design variables. Then, an orthogonal basis is constructed based on the evaluation at convergence of the Hessian matrix of the primary criterion and constraint gradients. This basis is used to split the working design space into two supplementary subspaces to be assigned, in a second step, to two virtual players in competition in an adapted Nash game, devised to reduce a secondary criterion while causing the least degradation to the first. The formulation is proved to potentially provide a set of Nash equilibrium solutions originating from the original single-discipline optimum point by smooth continuation, thus introducing competition gradually. This approach is demonstrated over a testcase of aero-structural aircraft wing shape optimization, in which the eigen-split-based optimization reveals clearly superior. Thereafter, a result of convex analysis is established for a general unconstrained multiobjective problem in which all the gradients are assumed to be known. This results provides a descent direction common to all criteria, and adapting the classical steepest-descent algorithm by using this direction, a new algorithm is defined referred to as the multiple-gradient descent algorithm (MGDA). The MGDA realizes a phase of cooperative optimization yielding to a point on the Pareto set, at which a competitive optimization phase can possibly be launched on the basis of the local eigenstructure of the different Hessian matrices.
机译:本文旨在为用于PDE约束的多目标优化的数值策略做出贡献,特别强调CPU需求的计算应用程序,其中要减少(或减少)的不同标准来自共享同一组设计变量的不同物理学科。在重点介绍Nash游戏的方法之前,先对最常用的算法进行识别或近似,以了解其优缺点。提出了一种用于处理两学科优化问题的策略,其中一门学科(主要学科)占优势或脆弱。然后,建议首先使用整个设计变量集单独确定该学科的最佳方法。然后,基于基本准则和约束梯度的Hessian矩阵收敛时的评估,构建正交基础。此基础用于将工作设计空间划分为两个补充子空间,在第二步中将它们分配给经过改编的Nash游戏中竞争中的两个虚拟玩家,该游戏旨在减少次要标准,同时使对第一个标准的降级最少。事实证明,该公式可以通过平滑连续性提供源自原始单学科最优点的一组Nash平衡解,从而逐渐引入竞争。这种方法在航空结构飞机机翼形状优化的测试案例中得到了证明,其中基于特征分解的优化显示出明显的优越性。此后,针对一般无约束的多目标问题建立了凸分析的结果,在该问题中所有梯度都假定为已知。该结果提供了所有标准通用的下降方向,并通过使用该方向来适应经典的最速下降算法,定义了一种称为多梯度下降算法(MGDA)的新算法。 MGDA在Pareto集合上实现了一个协作优化阶段,在该阶段可以根据不同的Hessian矩阵的局部本征结构启动竞争性优化阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号