首页> 外文期刊>Computers & Fluids >The numerical simulation of the wing kinematics effects on near wake topology and aerodynamic performance in hovering Drosophila flight
【24h】

The numerical simulation of the wing kinematics effects on near wake topology and aerodynamic performance in hovering Drosophila flight

机译:果蝇飞行中机翼运动学对近尾拓扑和气动性能影响的数值模拟。

获取原文
获取原文并翻译 | 示例
           

摘要

The parallel large-scale unstructured finite volume method based on an Arbitrary Lagrangian-Eulerian (ALE) formulation in Erzincanli and Sahin (2013) has been employed in order to investigate the effects of the wing kinematics on the near wake topology produced by a pair of flapping Drosophila wings in hover flight. The three-dimensional wing shape and the baseline wing kinematics are the same as those of the robotic fly by Dickinson et al. (1999). The simulations are used to quantify the important wing kinematic parameters for the wake topology and as well as their correlations with the force production. The angle-of-attack is shown to be very effective for producing lift during the wing translational motion. However, for larger values the angle-of-attack limits the angle during the stroke reversal and reduces the rotational lift. The angle-of-attack at which the maximum lift coefficient occurs is in excellent agreement with the earlier experiments in the literature. In addition, the numerical results confirm that the increase in the wing stroke amplitude leads to a prolonged attachment of the leading edge vortex (LEV) over a relatively large distance and increases force production. The variations in the heave angle include the figure-of-eight pattern, figure-of-O pattern and figure-of-U pattern. The constant heave angle and figure-of-eight pattern are found to have a more profound influence on the magnitude of force production. In addition, some asymmetric variations in the wing kinematics are introduced in order to assess the important parameters determining forward and backward flights. The paddling wing motion is shown to be very effective to initiate forward and backward acceleration. (C) 2015 Elsevier Ltd. All rights reserved.
机译:为了研究机翼运动学对一对副翼产生的近尾波拓扑的影响,采用了基于Erzincanli和Sahin(2013)中任意Lagrangian-Eulerian(ALE)公式的并行大规模非结构有限体积方法。在盘旋飞行中拍打果蝇翅膀。三维机翼形状和基线机翼运动学与Dickinson等人的机器人飞行相同。 (1999)。仿真用于量化尾流拓扑的重要机翼运动学参数及其与力产生的关系。攻角被证明对于机翼平移运动中产生升力非常有效。但是,对于较大的值,攻角会限制行程反向过程中的角度并降低旋转升力。产生最大升力系数的攻角与文献中较早的实验非常吻合。另外,数值结果证实,机翼冲程幅度的增加导致前缘涡旋(LEV)在相对较大的距离上的延长附着并增加了力的产生。升沉角的变化包括八字形图案,O形图案和U形图案。发现恒定的升沉角和八字形图案对力产生的大小具有更深远的影响。另外,在机翼运动学中引入了一些不对称变化,以评估确定向前和向后飞行的重要参数。桨叶运动显示出非常有效的启动向前和向后加速。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号