...
首页> 外文期刊>Computers & Fluids >Coupled Navier-Stokes molecular dynamics simulation: Theory and applications based on iterative operator-splitting methods
【24h】

Coupled Navier-Stokes molecular dynamics simulation: Theory and applications based on iterative operator-splitting methods

机译:耦合的Navier-Stokes分子动力学模拟:基于迭代算子分解方法的理论和应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we contribute a multi-scale method based on an iterative operator splitting method, which takes into account the disparity between the macro- and micro-scopic scales. We couple the Navier-Stokes equations with molecular dynamics equations, while taking into account their underlying scales. Combining relaxation methods and averaging techniques, we can optimize the computational effort. The motivation arose from modeling fluid transport under the influence of a multiscale problem that has to be solved with smaller time scales, e.g., a non-Newtonian flow problem. The application concerned colloidal damping or fluid-solid problems, where we study an area where the Navier-Stokes equations have too little information about the stream field and we need at least the Boltzmann equation to obtain information about the whole density field. A novel research field is for example that of carbon nanotubes, where we have to couple macro- and micro-models and obtain a fluid-solid area which uses the Lennard-Jones fluid model. The proposed method to solve such delicate problems enables simulations in which the continuum flow aspects of the flow are described by the Navier-Stokes equations at time-scales appropriate for this level of modeling, while the viscous stresses within the Navier-Stokes equations are the result of molecular dynamics simulations, with much smaller time-scales. The main benefit of the proposed method is that time-dependent flows can then be modeled with a computational effort which is significantly less than if the complete flow were to be modeled at the molecular level, as a result of the different time-scales at the continuum and molecular levels, enabled by the application of the iterative operator-splitting method. We carry out a convergence analysis for the splitting methods, see also [30]. Finally, we present numerical results for the modified methods and applications to real-life flow problems.
机译:在本文中,我们提出了一种基于迭代算子拆分方法的多尺度方法,该方法考虑了宏观尺度和微观尺度之间的差异。我们将Navier-Stokes方程与分子动力学方程相结合,同时考虑了它们的基本尺度。结合松弛方法和平均技术,我们可以优化计算工作量。动力来自在必须用较小的时间尺度来解决的多尺度问题(例如非牛顿流问题)的影响下对流体输送进行建模的动机。该应用程序涉及胶体阻尼或流体-固体问题,我们在该区域研究Navier-Stokes方程对流场的信息太少,并且至少需要Boltzmann方程来获得有关整个密度场的信息。例如,碳纳米管是一个新的研究领域,在这里我们必须耦合宏观模型和微观模型并获得使用Lennard-Jones流体模型的流固区域。所提出的解决此类棘手问题的方法使得能够进行仿真,在该仿真中,由Navier-Stokes方程在适合此建模级别的时间尺度上描述了流动的连续流方面,而Navier-Stokes方程中的粘性应力为分子动力学模拟的结果,时间尺度要小得多。所提出的方法的主要优点是,随时间变化的流可以用计算量进行建模,这要比在分子水平上对完整流进行建模的结果要少得多,这是由于在时间上不同的时标所致。连续水平和分子水平,可通过使用迭代算子拆分方法实现。我们对分裂方法进行了收敛分析,另请参见[30]。最后,我们给出了修改后的方法和对实际生活中的流动问题的应用的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号