首页> 外文期刊>レ-ザ-研ニエ-ス >Three-dimensional particle-in-cell simulations of energetic electron generation and transport with relativistic laser pulses in overdense plasmas
【24h】

Three-dimensional particle-in-cell simulations of energetic electron generation and transport with relativistic laser pulses in overdense plasmas

机译:相对论激光脉冲在高密度等离子体中高能电子的产生和传输的三维粒子模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In recent years, the advent of multi-terawatt lasers capable of producing focused laser intensities over 10{sup}19 W/cm{sup}2 and driving electron motion into the relativistic regime, has opened up many new interesting fields of research such as fast ignition for inertial fusion[1]. In the fast ignitor scheme, the intense laser pulse propagates through a coronal plasma up to several times the critical density and delivers energy to relativistic particles; these highly energetic particles then transport the energy through the overdense plasma to the center of the compressed core and ignite the fuel there. Considerable amount of experimental and numerical simulation works has been done on the physics of intense laser pulse propagation and the acceleration of electrons and ions in high density plasmas. However, the related problem of the propagation of intense electron bunches into the core, has not received as much attention. It has only recently been realized that collective phenomena play a crucial role in this energy transport. This paper is devoted to a three dimensional (3D) particle-in-cell (PIC) simulations of these collective phenomena. Typically, the electron currents generated near the vacuum plasma interface exceed the Alfven critical current[2] which should produce intense self-consistent B fields bending the electron trajectories backwards and preventing their penetration into the overdense plasma. However, in a dense plasma important shielding effects arise and the high energy electron current is neutralized by a cold electron return current. This allows the high energy electrons to propagate unimpeded into the overdense plasma. However, this system is unstable to a relativistic electromagnetic two stream instability (the so-called Weibel instability[3]) which breaks up the fast electron current into filaments. The work of our group [4] and the more detailed work of Honda et al. [5] have shown that the current filaments are self-organized to a state in which each filament carries a net current less than the Alfven limit. In this article, we extend these works to the three dimensional case with the help of 3D particle simulation.
机译:近年来,能够产生超过10 {sup} 19 W / cm {sup} 2的聚焦激光强度并驱动电子运动进入相对论状态的多兆瓦激光的出现开辟了许多新的有趣的研究领域,例如惯性融合的快速点火[1]。在快速点火器方案中,强激光脉冲通过冠状等离子体传播,达到临界密度的几倍,并向相对论粒子传递能量。然后,这些高能粒子将能量通过超稠等离子体传输到压缩核的中心,并在那里点燃燃料。关于强激光脉冲传播的物理以及高密度等离子体中电子和离子的加速,已经进行了大量的实验和数值模拟工作。但是,有关强电子束向芯内传播的相关问题尚未引起足够的重视。直到最近才意识到,集体现象在这种能量传输中起着至关重要的作用。本文致力于这些集体现象的三维(3D)单元内粒子(PIC)仿真。通常,在真空等离子体界面附近产生的电子电流超过Alfven临界电流[2],这将产生强烈的自洽B场,从而使电子轨迹向后弯曲,并防止其渗透到过密度的等离子体中。但是,在密集的等离子体中,会产生重要的屏蔽效果,并且高能电子电流会被冷电子返回电流抵消。这允许高能电子不受阻碍地传播到超密度等离子体中。但是,该系统对于相对论电磁两流不稳定性(所谓的韦贝尔不稳定性[3])不稳定,该不稳定将快速电子电流分解成细丝。我们小组的工作[4]和本田等人的更详细的工作。文献[5]表明,电流灯丝是自组织的,每个灯丝的净电流都小于Alfven极限。在本文中,我们将借助3D粒子模拟将这些工作扩展到三维情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号