首页> 外文学位 >Physics of laser-driven relativistic plasmas energetic X-rays, proton beams and relativistic electron transport in Petawatt laser experiments.
【24h】

Physics of laser-driven relativistic plasmas energetic X-rays, proton beams and relativistic electron transport in Petawatt laser experiments.

机译:皮塔瓦激光实验中,激光驱动的相对论等离子体的物理是高能X射线,质子束和相对论电子传输。

获取原文
获取原文并翻译 | 示例

摘要

Experiments investigating laser-matter interactions, where the laser power extends into the Petawatt (1015 Watt) regime, are presented. The focused (f/3) laser intensities (∼500 Joules at .5 pico-seconds) as high as 3 1020 W/cm2 are reached for the first time and drive fully relativistic motions of the electrons found at the laser-matter interface. We report on the experimental measurements of the radiation phenomena characteristic of these super-intense laser pulses. Significantly, the discovery of laser-accelerated intense proton beams is presented. We summarize the extensive studies into the proton beam characteristics and acceleration mechanisms of the proton beam physics. These energetic beams carry currents into the Meg-Amp range and have peak energies as high as 48 MeV with multiple-slope temperatures of ∼3 and ∼50 MeV and usually exhibit a high-energy cut-off. They are accelerated primarily off the rear surfaces of our thin foil targets and have ballistic trajectories normal to the emission surface. The proton acceleration mechanism (Target Sheath Normal Acceleration) is found to be a very efficient process. Laser energy to proton beam energy conversion ratios of 10–30% are inferred in the data. The driving force behind the proton acceleration mechanism is ultra-high current relativistic electron transport in solid density plasma. These electrons participate in many effects but notably in Bremsstrahlung radiation and the Petawatt laser performance to create extraordinarily bright X-Ray sources is investigated in detail. We report the most intense forward driven x-ray fluxes yet measured in laser experiments, with peak irradiance as high as 2 Rads at 1 meter. Overall yields into high energy x-rays of 11 Joules imply laser absorption mechanisms with 45–55% efficiency. A Monte Carlo Ponderomotive Kinematics (MPK) code is developed and is used to analyze the laser relativistic electron interaction, transport and high-energy x-ray relationships. These experiments required the development of new laser-plasma diagnostics. Radio-chromic film detectors were developed for the first time for use in high-energy plasma diagnosis. Development of a large array of thermo-luminescent x-ray detectors is also covered. Novel techniques of nuclear activation are employed for the first time in laser plasma studies and are used to identify the unique features of laser-driven proton beams.
机译:提出了研究激光与物质相互作用的实验,其中激光功率扩展到了Petawatt(10 15 Watt)状态。首次达到高达3 10 20 W / cm 2 的聚焦(f / 3)激光强度(.5皮秒时约500焦耳)并驱动在激光物质界面上发现的电子的相对论运动。我们报告了这些超强激光脉冲的辐射现象特征的实验测量结果。重要的是,提出了激光加速强质子束的发现。我们总结了对质子束特性和质子束物理学加速机制的广泛研究。这些高能束将电流带入Meg-Amp范围,并具有高达48 MeV的峰值能量,多斜率温度约为3和50 MeV,通常表现出高能量截止。它们主要从我们的薄片目标的后表面加速,并具有垂直于发射表面的弹道。发现质子加速机制(目标鞘法正常加速)是一个非常有效的过程。数据中推断出激光能量与质子束能量的转换率为10–30%。质子加速机制背后的驱动力是固体密度等离子体中的超大电流相对论电子传输。这些电子参与了许多作用,但特别是参与了stra致辐射辐射,并详细研究了Petawatt激光产生超亮X射线源的性能。我们报告了激光实验中测量到的最强的前向驱动X射线通量,其峰值辐照度在1米处高达2 Rads。 11焦耳高能X射线的总产率表明,激光吸收机理的效率为45-55%。开发了蒙特卡洛机车运动学(MPK)代码,用于分析激光相对论电子相互作用,传输和高能X射线关系。这些实验需要开发新的激光等离子体诊断仪。首次开发了用于高能等离子体诊断的放射变色薄膜检测器。还涵盖了各种热发光X射线检测器的开发。激光等离子体研究中首次采用了新的核激活技术,并用于识别激光驱动质子束的独特特征。

著录项

  • 作者

    Snavely, Richard Adolph.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

  • 入库时间 2022-08-17 11:45:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号