首页> 外文期刊>Computational Materials Science >Physically based crystal plasticity FEM including geometrically necessary dislocations: Numerical implementation and applications in micro-forming
【24h】

Physically based crystal plasticity FEM including geometrically necessary dislocations: Numerical implementation and applications in micro-forming

机译:基于物理的晶体可塑性有限元,包括几何上必要的位错:微观成形中的数值实现和应用

获取原文
获取原文并翻译 | 示例
       

摘要

Due to size effects, the conventional material constitutive models are no longer valid in the investigation of micro-forming processes. In this work, a nonlocal physically based crystal plasticity FEM is developed to investigate the size effects of micro-forming. Except for statistically stored dislocations, geometrically necessary dislocations on the slip systems are introduced and calculated via the mesh-free paradigm. The micro-tensile and micro-deep drawing experiments of polycrystalline copper foils with different thicknesses and grain sizes are used to calibrate the presented nonlocal model. The comparison between simulations and experiments shows that the nonlocal physically based crystal plasticity FEM is capable of describing both the first order and the second order size effects of the micro-forming processes, and providing more microstructural clues for the interpretation of these size effects. Furthermore, the simulations of micro-deep drawings demonstrate that the presented nonlocal method is robust in the simulations with complex contact boundary conditions. (C) 2015 Elsevier B.V. All rights reserved.
机译:由于尺寸的影响,传统的材料本构模型在研究微成型过程中不再有效。在这项工作中,开发了一种非局部的基于物理的晶体可塑性有限元方法,以研究微成形的尺寸效应。除统计存储的位错外,还通过无网格范例引入并计算了滑移系统上的几何必要位错。使用具有不同厚度和晶粒尺寸的多晶铜箔的微拉伸和深拉伸试验来校准提出的非局部模型。仿真和实验之间的比较表明,非局部基于物理的晶体可塑性FEM能够描述微成型过程的一级和二级尺寸效应,并为解释这些尺寸效应提供了更多的微观结构线索。此外,微观深图的仿真表明,所提出的非局部方法在具有复杂接触边界条件的仿真中具有鲁棒性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号