首页> 外文期刊>Computers and Electrical Engineering >Variability-aware architecture level optimization techniques for robust nanoscale chip design
【24h】

Variability-aware architecture level optimization techniques for robust nanoscale chip design

机译:健壮的纳米级芯片设计的可变性感知架构级别优化技术

获取原文
获取原文并翻译 | 示例
           

摘要

The design space for nanoscale CMOS circuits is vast, with multiple dimensions corresponding to process variability, leakage, power, thermal, reliability, security, and yield considerations. These design issues in the form of either objectives or constraints can be handled at various levels of digital design abstraction, such as architectural, logic and transistor. At the architectural level (a.k.a. Register-Transfer Level, RTL), there is a balanced degree of freedom for fast design exploration by exploring various values of design parameters. Correct design decisions at an early phase of the design cycle ensure that design errors are not propagated to lower levels of circuit abstraction, where it is costly to correct them. Moreover, design optimization at higher levels of abstraction provides a convenient way to deal with design complexity, facilitates design verification, and increases design reuse through intellectual property (IP) cores. To achieve power-performance trade-offs, different architectural-level techniques have been proposed in the existing literature. This paper will briefly discuss selected RTL techniques which account for process variation. These existing approaches handle the optimization of different power components independently but do not effectively account for the inherent variation of process and design parameters. Thus, in this paper, a novel process variation aware statistical RTL optimization approach is presented. Assuming dual values of T_(ox), V_(th), and V_(DD), gate-oxide leakage, subthreshold leakage, dynamic power, and performance are estimated for architectural units. Statistical variations in the parameters (T_(gate), V_(th), V_(DD), and L_(eff)), are explicitly taken into account by using Monte Carlo simulations while characterizing the architectural units. The proportion of values of gate-oxide and subthreshold leakage and dynamic power in the total power consumption of these units is then analyzed. This analysis in essence gives a relative and integrated perspective of various power-performance tradeoffs against the baseline case, thus serving as a guideline to help designers make appropriate decisions. Experiments on several benchmarks show a significant reduction in gate-oxide and subthreshold leakage, dynamic, and total power.
机译:纳米级CMOS电路的设计空间很大,其多维尺寸对应于工艺可变性,泄漏,功率,热,可靠性,安全性和成品率方面的考虑。这些目标或约束形式的设计问题可以在数字设计抽象的各个级别(例如体系结构,逻辑和晶体管)进行处理。在体系结构级别(又称为寄存器传输级别,RTL),通过探索各种设计参数值,可以实现快速的设计探索平衡的自由度。在设计周期的早期阶段,正确的设计决策可确保设计错误不会传播到较低的电路抽象层,而在较低的电路抽象层进行纠正的成本很高。此外,更高抽象级别的设计优化为处理设计复杂性,促进设计验证和通过知识产权(IP)内核增加设计重用性提供了便捷的方法。为了实现功率性能的折衷,现有文献中已经提出了不同的架构级技术。本文将简要讨论考虑了过程变化的选定RTL技术。这些现有方法独立地处理不同功率组件的优化,但不能有效地解决工艺和设计参数的内在变化。因此,在本文中,提出了一种新颖的过程变化感知统计RTL优化方法。假设T_(ox),V_(th)和V_(DD)为双值,则估算出建筑单元的栅极氧化物泄漏,亚阈值泄漏,动态功率和性能。通过在表征建筑单元的同时使用蒙特卡洛模拟,明确考虑了参数的统计变化(T_(门),V_(th),V_(DD)和L_(eff))。然后分析这些单元的总功耗中栅极氧化物和亚阈值泄漏以及动态功率的值的比例。这种分析从本质上给出了相对于基准情况的各种功率性能折衷的相对和综合的观点,从而成为帮助设计人员做出适当决策的指南。在多个基准上进行的实验表明,栅极氧化物和亚阈值泄漏,动态功率和总功率均显着降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号