...
首页> 外文期刊>Computer Modeling in Engineering & Sciences >A Hybrid Quantum-Classical Simulation Study on Stress-Dependence of Li Diffusivity in Graphite
【24h】

A Hybrid Quantum-Classical Simulation Study on Stress-Dependence of Li Diffusivity in Graphite

机译:石墨中Li扩散系数与应力相关性的混合量子经典模拟研究

获取原文
获取原文并翻译 | 示例

摘要

Understanding the stress dependence of Li diffusivity in the Li-graphite intercalation compound (Li-GIC) that has been used in the Li-ion rechargeable battery as a negative electrode, is important to search for better conditions to improve the power performance of the battery. In the Li-GIC, the Li ion creates a long-ranged stress field around itself by expanding the inter-layer distance of the graphite. To take into account such a long-ranged stress field in the first-principles simulation of the Li diffusion, we develop the hybrid quantum (QM)-classical (CL) simulation code. In the hybrid code, the QM region selected adaptively around the Li ion following its motion is treated with the real-space density-functional theory. The rest of the total system is described with an empirical inter-atomic potential that includes a novel formula for the dispersion force between the C atoms that belong to different layers. A series of the hybrid QM-CL simulation runs for the dynamics of a single Li-ion in the graphite are performed at temperature 423 K for various values of the averaged inter-layer distance. We thereby find that the Li diffusivity is suppressed substantially when the inter-layer distance is compressed by a few percent from the equilibrium value. On the other hand, the Li diffusivity is unaffected by the stretching of the inter-layer distance up to a few percent. In the equihbrium and stretched cases, the diffusive motion of the Li ion is composed of ballistic and hopping modes. In the compressed case, the Li ion diffuses in the hopping mode only and is confined in a small area at long times. Separately the activation energy for the hopping diffusion is calculated at zero temperature to find that it is as small as 0.1 eV and that the substantial contribution comes from the deformation energy of the whole system. Based on the findings we propose a mechanism to explain the unique Li-density dependence of the Li diffusivity observed experimentally in the Li-GIC.
机译:了解锂离子插层化合物(Li-GIC)中锂扩散系数对应力的依赖性,该化合物已被用作锂离子可充电电池的负极,对于寻找更好的条件以改善电池的动力性能非常重要。 。在Li-GIC中,Li离子通过扩大石墨的层间距离在其周围产生一个长距离应力场。为了在Li扩散的第一性原理模拟中考虑到这种长距离应力场,我们开发了混合量子(QM)-经典(CL)模拟代码。在混合代码中,使用真实空间密度泛函理论处理在Li离子运动之后在Li离子周围自适应选择的QM区域。整个系统的其余部分以经验原子间电势进行描述,其中包括用于属于不同层的C原子之间的分散力的新公式。针对平均层间距离的各种值,在温度423 K下针对石墨中单个锂离子的动力学进行了一系列混合QM-CL仿真。因此我们发现,当层间距离从平衡值压缩百分之几时,Li扩散率被显着抑制。另一方面,Li的扩散率不受层间距离的拉伸直至百分之几的影响。在平衡和拉伸情况下,锂离子的扩散运动由弹道和跳跃模式组成。在压缩情况下,Li离子仅以跳频模式扩散并且长时间被限制在小区域中。分别计算在零温度下跳跃扩散的活化能,发现活化能小至0.1 eV,并且很大的贡献来自整个系统的形变能。基于这些发现,我们提出了一种机制来解释在Li-GIC中实验观察到的Li扩散率的独特Li密度依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号