首页> 外文期刊>Computational & theoretical chemistry >Exploring molecular flexibility and the interactions of Quercetin derivatives in the active site of alpha-glucosidase using molecular docking and charge density analysis
【24h】

Exploring molecular flexibility and the interactions of Quercetin derivatives in the active site of alpha-glucosidase using molecular docking and charge density analysis

机译:使用分子对接和电荷密度分析探索分子柔性和槲皮素衍生物在α-葡萄糖苷酶活性位点的相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

Molecular docking and charge density analysis were carried out to understand the geometry, charge density distribution and the electrostatic properties of Quercetin and its derivatives and for the same present in the active site of the alpha-glucosidase of S. cerevisiae. By using molecular docking, the binding energies and nearest amino acids were calculated. Due to absence of the bioactive conformation from experimental data, conformations were elected in this text from the docking procedure based on chemometric techniques in order to represent the set of the promising configurations. The optimized geometries of these molecules were performed using Hartree-Fork and Density Functional Theory (DFT-B3LYP) combined with the theory of atoms in molecules (AIM). It is observed that the geometrical, bond topological and the electrostatic properties of the molecules are significantly altered in the active site. The introduced substituent groups with different volume and polarity have some influence on the variations of charge and polarization when the molecules present in the active site. All of the dipole moments of the three molecules are changed in the active site on compared with the gas phase, especially the one introduced large polar substituent group. Comparing with the parent Quercetin molecule, the two derivatives have lower energy gaps between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in the active site, which illustrates their lower stability and higher inhibition activity. The comparative study on the geometrical and electrostatic properties of these synthetic or natural molecules is useful for further designing new drugs for the better treatment of diabetes disease. (C) 2016 Elsevier B.V. All rights reserved.
机译:进行了分子对接和电荷密度分析,以了解槲皮素及其衍生物以及啤酒酵母α-葡萄糖苷酶活性位点中存在的槲皮素及其衍生物的几何形状,电荷密度分布和静电特性。通过使用分子对接,计算了结合能和最接近的氨基酸。由于实验数据缺乏生物活性构象,因此在本文中基于化学计量技术从对接程序中选出了构象,以代表有前途的构型。这些分子的优化几何形状是使用Hartree-Fork和密度泛函理论(DFT-B3LYP)结合分子中的原子理论(AIM)进行的。观察到分子的几何,键拓扑和静电性质在活性位点显着改变。当分子存在于活性位点时,所引入的具有不同体积和极性的取代基对电荷和极化的变化有一定影响。与气相相比,这三个分子的所有偶极矩在活性位点都发生了变化,尤其是一个引入的大极性取代基。与母体槲皮素分子相比,这两种衍生物在活性位点的最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)之间具有较低的能隙,这说明它们的稳定性较低,抑制活性较高。这些合成或天然分子的几何和静电性质的比较研究可用于进一步设计更好地治疗糖尿病的新药。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号