...
首页> 外文期刊>Biomacromolecules >Toward a Designable Extracellular Matrix: Molecular Dynamics Simulations of an Engineered Laminin-Mimetic, Elastin-Like Fusion Protein
【24h】

Toward a Designable Extracellular Matrix: Molecular Dynamics Simulations of an Engineered Laminin-Mimetic, Elastin-Like Fusion Protein

机译:迈向可设计的细胞外基质:工程化层粘连蛋白模拟,弹性蛋白样融合蛋白的分子动力学模拟。

获取原文
获取原文并翻译 | 示例
           

摘要

Native extracellular matrices (ECMs) exhibit networks of molecular interactions between specific matrix proteins and other tissue components. Guided by these naturally self-assembling supramolecular systems, we have designed a matrix-derived protein chimera that contains a laminin globular-like (LG) domain fused to an elastin-like polypeptide (ELP). This bipartite design offers a flexible protein engineering platform: (i) laminin is a key multifunctional component of the ECM in human brains and other neural tissues, making it an ideal bioactive component of our fusion, and (ii) ELPs, known to be well-tolerated in vivo, provide a self-assembly scaffold with tunable physicochemical (viscoelastic, thermoresponsive) properties. Experimental characterization of novel proteins is resource-intensive, and examining many conceivable designs would be a formidable challenge in the laboratory. Computational approaches offer a way forward: molecular dynamics (MD) simulations can be used to analyze the structural/physical behavior of candidate LG-ELP fusion proteins, particularly in terms of conformational properties salient to our design goals, such as assembly propensity in a temperature range spanning the inverse temperature transition. As a first step in examining the physical characteristics of a model LG-ELP fusion protein, including its temperature-dependent structural behavior, we simulated the protein over a range of physiologically relevant temperatures (290-320 K). We find that the ELP region, built upon the archetypal (VPGXG)(5) scaffold, is quite flexible and has a propensity for beta-rich secondary structures near physiological (310-315 K) temperatures. Our trajectories indicate that the temperature-dependent burial of hydrophobic patches in the ELP region, coupled to the local water structure dynamics and mediated by intramolecular contacts between aliphatic side chains, correlates with the temperature dependent structural transitions in known ELP polymers. Because of the link between compaction of ELP segments into beta-rich structures and differential solvation properties of this region, we posit that future variation of ELP sequence and composition can be used to systematically alter the phase transition profiles and, thus, the general functionality of our LG-ELP fusion protein system.
机译:天然细胞外基质(ECM)展示了特定基质蛋白与其他组织成分之间的分子相互作用网络。在这些自然自组装的超分子系统的指导下,我们设计了一种基质衍生的蛋白质嵌合体,其中包含与弹性蛋白样多肽(ELP)融合的层粘连蛋白球状(LG)域。这种双向设计提供了灵活的蛋白质工程平台:(i)层粘连蛋白是人脑和其他神经组织中ECM的关键多功能组件,使其成为我们融合的理想生物活性组件,以及(ii)众所周知的ELP在体内可耐受,提供具有可调节物理化学(粘弹性,热响应)特性的自组装支架。新蛋白的实验表征需要大量资源,而在实验室中检查许多可能的设计将是一个艰巨的挑战。计算方法提供了前进的方向:分子动力学(MD)仿真可用于分析候选LG-ELP融合蛋白的结构/物理行为,尤其是在对我们的设计目标有意义的构象特性方面,例如温度下的组装倾向逆温度转变的范围。作为检查模型LG-ELP融合蛋白的物理特征(包括其温度依赖性结构行为)的第一步,我们在生理相关温度范围(290-320 K)上模拟了该蛋白。我们发现建立在原型(VPGXG)(5)支架上的ELP区域非常灵活,并且在生理温度(310-315 K)附近具有富含β的二级结构的倾向。我们的轨迹表明,ELP区域中疏水性斑块的温度依赖性掩埋,与局部水结构动力学耦合并由脂族侧链之间的分子内接触介导,与已知的ELP聚合物中的温度依赖性结构转变相关。由于将ELP片段压缩为富含β的结构与该区域的不同溶剂化性质之间的联系,我们认为,ELP序列和组成的未来变化可用于系统地改变相变曲线,从而改变ELP的一般功能。我们的LG-ELP融合蛋白系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号