首页> 美国卫生研究院文献>other >Exploring the Molecular Design of Protein Interaction Sites with Molecular Dynamics Simulations and Free Energy Calculations
【2h】

Exploring the Molecular Design of Protein Interaction Sites with Molecular Dynamics Simulations and Free Energy Calculations

机译:用分子动力学模拟和自由能计算探索蛋白质相互作用位点的分子设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The significant work that has been invested toward understanding protein–protein interaction has not translated into significant advances in structure-based predictions. In particular redesigning protein surfaces to bind to unrelated receptors remains a challenge, partly due to receptor flexibility, which is often neglected in these efforts. In this work, we computationally graft the binding epitope of various small proteins obtained from the RCSB database to bind to barnase, lysozyme, and trypsin using a previously derived and validated algorithm. In an effort to probe the protein complexes in a realistic environment, all native and designer complexes were subjected to a total of nearly 400 ns of explicit-solvent molecular dynamics (MD) simulation. The MD data led to an unexpected observation: some of the designer complexes were highly unstable and decomposed during the trajectories. In contrast, the native and a number of designer complexes remained consistently stable. The unstable conformers provided us with a unique opportunity to define the structural and energetic factors that lead to unproductive protein–protein complexes. To that end we used free energy calculations following the MM-PBSA approach to determine the role of nonpolar effects, electrostatics and entropy in binding. Remarkably, we found that a majority of unstable complexes exhibited more favorable electrostatics than native or stable designer complexes, suggesting that favorable electrostatic interactions are not prerequisite for complex formation between proteins. However, nonpolar effects remained consistently more favorable in native and stable designer complexes reinforcing the importance of hydrophobic effects in protein–protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between native and designer complexes. A series of alanine scanning mutations of hot-spot residues at the interface of native and designer complexes showed less than optimal contacts of hot-spot residues with their surroundings in the unstable conformers, resulting in more favorable entropy for these complexes. Finally, disorder predictions revealed that secondary structures at the interface of unstable complexes exhibited greater disorder than the stable complexes.
机译:为了解蛋白质间相互作用而投入的大量工作尚未转化为基于结构的预测的重大进展。特别地,重新设计蛋白质表面以结合不相关的受体仍然是一个挑战,部分原因是由于受体的柔韧性,而在这些努力中常常被忽略。在这项工作中,我们使用先前衍生和验证的算法,通过计算嫁接了从RCSB数据库中获得的各种小蛋白质的结合表位,以结合至芽孢杆菌蛋白酶,溶菌酶和胰蛋白酶。为了在实际环境中探测蛋白质复合物,所有天然和设计者复合物都经历了总计近400 ns的显式溶剂分子动力学(MD)模拟。 MD数据导致出乎意料的观察结果:某些设计器组合物在轨迹过程中高度不稳定并分解。相反,本机和许多设计师复合体始终保持稳定。不稳定的构象异构体为我们提供了一个独特的机会来定义导致无用的蛋白质-蛋白质复合物的结构和能量因素。为此,我们按照MM-PBSA方法使用自由能计算来确定非极性效应,静电和熵在结合中的作用。值得注意的是,我们发现大多数不稳定的复合物都比天然或稳定的设计者复合物表现出更有利的静电,这表明有利的静电相互作用并不是蛋白质之间形成复合物的前提。然而,非极性作用在天然和稳定的设计复合物中仍然始终是更有利的,从而增强了疏水作用在蛋白质-蛋白质结合中的重要性。尽管在所有情况下熵系统地反对结合,但是在天然和设计者复合物之间的熵差中没有观察到趋势。在天然和设计复合物界面处的一系列热点残基的丙氨酸扫描突变显示,不稳定残基中热点残基与周围环境的接触少于最佳接触,从而为这些复合物带来了更有利的熵。最后,无序预测显示不稳定复合物界面处的二级结构比稳定复合物表现出更大的无序性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号