...
首页> 外文期刊>Biomacromolecules >Computer Simulation of Uranyl Uptake by the Rough Lipopolysaccharide Membrane of Pseudomonas aeruginosa
【24h】

Computer Simulation of Uranyl Uptake by the Rough Lipopolysaccharide Membrane of Pseudomonas aeruginosa

机译:铜绿假单胞菌粗脂多糖膜吸收铀的计算机模拟

获取原文
获取原文并翻译 | 示例

摘要

Heavy metal environmental contaminants cannot be destroyed but require containment,preferably in concentrated form,in a solid or immobile form for recycling or final disposal.Microorganisms are able to take up and deposit high levels of contaminant metals,including radioactive metals such as uranium and plutonium,into their cell wall.Consequently,these microbial systems* are of great interest as the basis for potential environmental bioremediation technologies.The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane.This gradient has a significant effect on the uptake and transport of charged and dipolar compounds.However,the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall.To aid in the design of microbial remediation technologies,knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance.Using our previously developed model for the lipopolysaccharide(LPS)membrane of Pseudomonas aeruginosa,this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium,calcium,chloride,uranyl ions,and a water molecule by the bacterial LPS membrane.A compatible classical parameter set for uranyl has been developed and validated.Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied.At neutral pH,this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.
机译:重金属环境污染物无法销毁,但需要围堵,最好是固态或固定形式的固体形式,以便回收或最终处置。微生物能够吸收和沉积高含量的污染物金属,包括放射性金属,例如铀和p因此,作为潜在的环境生物修复技术的基础,这些微生物系统*倍受关注。革兰氏阴性微生物的外膜高度不对称,并且在整个膜上均表现出显着的静电势梯度。对带电和偶极化合物的吸收和运输产生重大影响。然而,微生物对环境修复的有效性在很大程度上取决于确定特定细胞壁对目标污染物的吸收的特定特性。修复技术,了解造成污染的因素确定特定细菌外膜对受污染的土壤和地下水中最常见的离子种类的亲和力具有重要意义。使用我们先前开发的铜绿假单胞菌脂多糖(LPS)膜模型,这项工作提出了平均力的潜力作为细菌LPS膜对钠,钙,氯化物,铀酰离子和水分子吸收的自由能概图的评估,开发并验证了兼容的经典铀酰参数集。结果表明,对铀酰的吸收在中性pH下,该核素通过与位于外核的羧基和羟基螯合而保留在LPS膜的表面,这在能量上是一个有利的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号