...
首页> 外文期刊>Colloids and Surfaces, B. Biointerfaces >Why does the silica-binding protein ' Si-tag' bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces
【24h】

Why does the silica-binding protein ' Si-tag' bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces

机译:为什么二氧化硅结合蛋白“ Si-tag”与二氧化硅表面牢固结合?本质上无序的多肽构象适应固体表面的意义

获取原文
获取原文并翻译 | 示例

摘要

We recently reported that the bacterial 50S ribosomal protein L2 binds strongly to silica surfaces even in the presence of high salt concentrations, detergents, and denaturants such as 8. M urea. We designated L2 as Si-tag, a fusion tag for immobilizing functional proteins on silica materials. Here we discuss the remarkable properties of the Si-tag polypeptide in order to understand the mechanism underlying this binding. Experimental and theoretical studies have shown that the 60-aa N-terminal region and the 71-aa C-terminal region, both of which are rich in positively charged residues, lack a well-defined three-dimensional structure under physiological conditions. This lack of a stable tertiary structure suggests that Si-tag belongs to a family of intrinsically disordered (ID) proteins that exist as dynamic ensembles of rapidly fluctuating structures in aqueous solution. Because of its inherent flexibility, Si-tag could form a large intermolecular interface and optimize its structure for surface interactions by conformational adaptation at the binding interface. Such conformational adaptation occurring concomitantly with binding is common to many ID proteins and is called " coupled folding and binding" Through this conformational adaptation, Si-tag could optimize the interactions between its positively charged side chains and ionized surface silanol groups and between its apolar side chains and hydrophobic surface siloxane sites. The cumulative contribution of these contacts would significantly strengthen the binding of Si-tag, resulting in strong, virtually irreversible binding. Our study suggests that flexible ID proteins have tremendous potential for connecting biomolecules to inorganic materials.
机译:我们最近报道,细菌50S核糖体蛋白L2即使在高盐浓度,去污剂和变性剂(例如8. M尿素)的存在下也能与二氧化硅表面牢固结合。我们将L2指定为Si标签,这是一种将功能蛋白固定在二氧化硅材料上的融合标签。在这里,我们讨论了Si-tag多肽的显着特性,以了解这种结合的潜在机制。实验和理论研究表明,在生理条件下,都富含带正电残基的60-aa N端区域和71-aa C端区域均缺乏明确的三维结构。这种缺乏稳定的三级结构的现象表明,Si-tag属于内在无序(ID)蛋白家族,它们以水溶液中快速波动的结构的动态整体形式存在。由于其固有的灵活性,Si-tag可以形成较大的分子间界面,并通过在结合界面处进行构象适应来优化其表面相互作用的结构。这种结合发生的构象适应性是许多ID蛋白所共有的,被称为“偶联折叠和结合”。通过这种构象适应性,Si-tag可以优化其带正电荷的侧链与离子化的表面硅烷醇基团之间以及非极性侧之间的相互作用。链和疏水性表面硅氧烷位点。这些接触的累积贡献将显着增强Si-tag的结合,从而导致牢固的,几乎不可逆的结合。我们的研究表明,柔性ID蛋白具有将生物分子连接到无机材料的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号