首页> 外文期刊>Comparative biochemistry and physiology, Part A. Molecular and integrative physiology >Nitric oxide and mitochondrial biogenesis: A key to long-term regulation of cellular metabolism
【24h】

Nitric oxide and mitochondrial biogenesis: A key to long-term regulation of cellular metabolism

机译:一氧化氮和线粒体的生物发生:细胞代谢长期调控的关键

获取原文
获取原文并翻译 | 示例
       

摘要

Mitochondria, the site of oxidative energy metabolism in eukariotic cells, are a highly organised structure endowed with different enzymes and reactions localized in discrete membranes and aqueous compartments. Mitochondrial function is regulated in complex ways by several agonists and environmental conditions, through activation of specific transcription factors and signalling pathways. A key player in this scenario is nitric oxide (NO). Its binding to cytochrome c oxidase in the mitochondrial respiratory chain, which is reversible and in competition with oxygen, plays a role in acute oxygen sensing and in the cell response to hypoxia. Evidence of the last two years showed that NO has also long-term effects, leading to biogenesis of functionally active mitochondria, that complement its oxygen sensing function. Mitochondrial biogenesis is triggered by NO through activation of guanylate cyclase and generation of cyclic GMP, and yields formation of functionally active mitochondria. Thus, the combined action of NO at its two known intracellular receptors, cytochrome c oxidase and guanylate cyclase, appears to play a role in coupling energy generation with energy demand. This may explain why dysregulation of the NO signalling pathway is often associated with the pathogenesis of metabolic disorders. (C) 2005 Elsevier Inc. All rights reserved.
机译:线粒体是真核细胞中氧化能量代谢的部位,是一种高度组织化的结构,具有不同的酶和位于局部膜和水室中的反应。线粒体功能由多种激动剂和环境条件通过激活特定的转录因子和信号传导途径以复杂的方式调节。在这种情况下,关键因素是一氧化氮(NO)。它与线粒体呼吸链中的细胞色素c氧化酶的结合是可逆的,并且与氧气竞争,在急性氧气感测和细胞对缺氧的反应中发挥作用。最近两年的证据表明,NO也具有长期作用,导致功能活跃的线粒体的生物发生,从而补充了其氧感应功能。线粒体的生物发生是由鸟苷酸环化酶的激活和环状GMP的产生而由NO触发的,并形成功能活跃的线粒体。因此,NO对它的两个已知的细胞内受体,细胞色素c氧化酶和鸟苷酸环化酶的联合作用似乎在使能量产生与能量需求耦合中发挥作用。这可以解释为什么NO信号通路的失调通常与代谢紊乱的发病机理有关。 (C)2005 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号