...
首页> 外文期刊>Biophysical Journal >Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study.
【24h】

Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study.

机译:RNA沉默的病毒p19抑制子对siRNA的识别机制:分子动力学研究。

获取原文
获取原文并翻译 | 示例
           

摘要

The p19 protein (p19) encoded from Tombusvirus is involved in various activities such as pathogenicity and virus transport. Recent studies have found that p19 is a plant suppressor of RNA silencing, which binds to short interfering RNAs (siRNAs) with high affinity. We use molecular dynamics (MD) simulations of the wild-type and mutant p19 protein (W39 and W42G) binding with a 21-nt siRNA duplex to study the p19-siRNA recognition mechanism and mutation effects. Our simulations with standard MD and steered molecular dynamics have shown that the double mutant structure is indeed much less stable than the wild-type, consistent with the recent experimental findings. Comprehensive structural analysis also shows that the W39/42G mutations first induce the loss of stacking interactions between p19 and siRNA, Trp(42)-Cyt1 (Cyt1 from the 5' to 3' strand) and Trp(39)-Gua'19 (Gua19 from the 3' to 5' strand), and then breaks the hydrophobic core formed by W39-W42 with nucleotide basepairs in the wild-type. The steered molecular dynamics simulations also show that the mutant p19 complex is decompounded remains largely intact under the same steering force. Moreover, we have used the free energy perturbation to predict a binding affinity loss of 6.98 +/- 0.95 kcal/mol for the single mutation W39G, and 12.8 +/- 1.0 kcal/mol loss for the double mutation W39/42G, with the van der Waals interactions dominating the contribution ( approximately 90%). These results indicate that the W39/42G mutations essentially destroy the important p19-siRNA recognition by breaking the strong stacking interaction between Cyt1 and Gua'19 with end-capping tryptophans. These large scale simulations might provide new insights to the interactions and co-evolution relationship between RNA virus proteins and their hosts.
机译:由Tombusvirus编码的p19蛋白(p19)参与各种活动,例如致病性和病毒运输。最近的研究发现,p19是RNA沉默的植物抑制因子,它以高亲和力与短干扰RNA(siRNA)结合。我们使用与21 nt siRNA双链体结合的野生型和突变p19蛋白(W39和W42G)的分子动力学(MD)模拟来研究p19-siRNA的识别机制和突变效应。我们对标准MD和操纵分子动力学的模拟表明,双突变体结构确实比野生型稳定得多,这与最近的实验结果一致。全面的结构分析还显示,W39 / 42G突变首先引起p19和siRNA,Trp(42)-Cyt1(Cyt1从5'到3'链)和Trp(39)-Gua'19( (从3'到5'链加入Gua19),然后将W39-W42形成的疏水核心与野生型核苷酸碱基对分开。操纵分子动力学模拟还显示,在相同的操纵力下,突变的p19复合物被分解,在很大程度上保持完整。此外,我们利用自由能扰动预测单突变W39G的结合亲和力损失为6.98 +/- 0.95 kcal / mol,双突变W39 / 42G的结合亲和力损失为12.8 +/- 1.0 kcal / mol,其中范德华相互作用占主导地位(约90%)。这些结果表明,W39 / 42G突变通过破坏Cyt1和Gua'19与端基色氨酸之间的强堆积相互作用,实质上破坏了重要的p19-siRNA识别。这些大规模模拟可能会为RNA病毒蛋白与其宿主之间的相互作用和共同进化关系提供新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号