...
首页> 外文期刊>Journal of the Optical Society of America, B. Optical Physics >Quantum-dot-based single-photon avalanche detector for mid-infrared applications
【24h】

Quantum-dot-based single-photon avalanche detector for mid-infrared applications

机译:基于量子点的单光子雪崩探测器,用于中红外应用

获取原文
获取原文并翻译 | 示例
           

摘要

A single-photon detector is presented with quantum dot (QD) layers in its absorption region. The proposed detector is a three-terminal device in which a QD-based absorption region is integrated with an avalanche multiplication region through a tunneling barrier and the applied bias of each region can be controlled separately. The mid-infrared single photons (lambda = 3 similar to 5 mu m) can be absorbed in QDs and the photogenerated electrons are drifted to the avalanche region to trigger an avalanche and generate an output pulse. Since the absorption region consists of doped QD layers, it is expected to have higher orders of dark count. However, by separately controlling the bias and keeping the electric field of absorption region low, the dark current of this region can be reduced. Our simulations predict a single-photon detection efficiency (SPQE) of about 0.7 at T = 50 K for the proposed detector. At higher temperatures, the dark count rate increases and results in reduced SPQE. To increase the operation temperature, resonant tunneling barriers (RTB) are included in the absorption region to inhibit the thermally excited electrons from contributing to the dark current generation. Our results show that the SPQE for the RTB-based device is about 0.65 at T = 77 K, which is approximately equivalent to the SPQE of the device without RTB at T = 50 K. (C) 2015 Optical Society of America
机译:提出了一种单光子检测器,在其吸收区域中具有量子点(QD)层。所提出的检测器是三端设备,其中基于QD的吸收区域通过隧道势垒与雪崩倍增区域集成在一起,并且每个区域的施加偏压都可以单独控制。中红外单光子(λ= 3,类似于5μm)可以被QD吸收,光生电子漂移到雪崩区域,触发雪崩并产生输出脉冲。由于吸收区由掺杂的QD层组成,因此有望具有更高数量的暗计数。但是,通过分别控制偏压并保持吸收区的电场低,可以减小该区的暗电流。我们的仿真预测,对于拟议的探测器,在T = 50 K时,单光子探测效率(SPQE)约为0.7。在较高的温度下,暗计数率会增加,并导致SPQE降低。为了提高工作温度,吸收区中包括了共振隧穿势垒(RTB),以抑制热激发电子对暗电流的产生做出贡献。我们的结果表明,基于RTB的设备在T = 77 K时的SPQE约为0.65,这大约等于在T = 50 K时没有RTB的设备的SPQE。(C)2015年美国光学学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号