...
首页> 外文期刊>Biophysical Journal >In vivo orientation of single myosin lever arms in zebrafish skeletal muscle.
【24h】

In vivo orientation of single myosin lever arms in zebrafish skeletal muscle.

机译:斑马鱼骨骼肌中单个肌球蛋白杠杆臂的体内定向。

获取原文
获取原文并翻译 | 示例
           

摘要

Cardiac and skeletal myosin assembled in the muscle lattice power contraction by transducing ATP free energy into the mechanical work of moving actin. Myosin catalytic/lever-arm domains comprise the transduction/mechanical coupling machinery that move actin by lever-arm rotation. In vivo, myosin is crowded and constrained by the fiber lattice as side chains are mutated and otherwise modified under normal, diseased, or aging conditions that collectively define the native myosin environment. Single-myosin detection uniquely defines bottom-up characterization of myosin functionality. The marriage of in vivo and single-myosin detection to study zebrafish embryo models of human muscle disease is a multiscaled technology that allows one-to-one registration of a selected myosin molecular alteration with muscle filament-sarcomere-cell-fiber-tissue-organ- and organism level phenotypes. In vivo single-myosin lever-arm orientation was observed at superresolution using a photoactivatable-green-fluorescent-protein (PAGFP)-tagged myosin light chain expressed in zebrafish skeletal muscle. By simultaneous observation of multiphoton excitation fluorescence emission and second harmonic generation from myosin, we demonstrated tag specificity for the lever arm. Single-molecule detection used highly inclined parallel beam illumination and was verified by quantized photoactivation and photobleaching. Single-molecule emission patterns from relaxed muscle in vivo provided extensive superresolved dipole orientation constraints that were modeled using docking scenarios generated for the myosin (S1) and GFP crystal structures. The dipole orientation data provided sufficient constraints to estimate S1/GFP coordination. The S1/GFP coordination in vivo is rigid and the lever-arm orientation distribution is well-ordered in relaxed muscle. For comparison, single myosins in relaxed permeabilized porcine papillary muscle fibers indicated slightly differently oriented lever arms and rigid S1/GFP coordination. Lever arms in both muscles indicated one preferred spherical polar orientation and widely distributed azimuthal orientations relative to the fiber symmetry axis. Cardiac myosin is more radially displaced from the fiber axis. Probe rigidity implies the PAGFP tag reliably indicates cross-bridge orientation in situ and in vivo.
机译:心脏和骨骼肌肌球蛋白通过将ATP自由能转化为运动肌动蛋白的机械功,从而在肌肉晶格中收缩。肌球蛋白的催化/杠杆臂域包括通过杠杆臂旋转来移动肌动蛋白的转导/机械耦合机制。在体内,当侧链在通常定义为天然肌球蛋白环境的正常,患病或衰老条件下突变并以其他方式修饰时,肌球蛋白被纤维晶格拥挤和约束。单肌球蛋白检测独特地定义了肌球蛋白功能的自下而上的表征。体内和单肌球蛋白检测技术的结合,用于研究人类肌肉疾病的斑马鱼胚胎模型是一项多尺度技术,可以将选定的肌球蛋白分子改变与肌丝-肌纤维细胞纤维组织器官进行一对一配准-和生物体水平的表型。使用斑马鱼骨骼肌中表达的可光激活的绿色荧光蛋白(PAGFP)标记的肌球蛋白轻链,以超高分辨率观察到体内单肌球蛋白杠杆臂方向。通过同时观察多光子激发荧光发射和肌球蛋白产生的二次谐波,我们证明了杠杆臂的标签特异性。单分子检测使用高度倾斜的平行光束照明,并通过定量光活化和光漂白进行了验证。体内松弛肌肉的单分子发射模式提供了广泛的超分辨偶极子方向约束,该约束使用对肌球蛋白(S1)和GFP晶体结构生成的对接场景进行建模。偶极子定向数据提供了足够的约束来估计S1 / GFP的配位。 S1 / GFP体内的协调是刚性的,并且杠杆臂的方向分布在松弛的肌肉中是有序的。为了进行比较,松弛的通透性猪乳头状肌纤维中的单个肌球蛋白指示了稍微不同的杠杆臂和刚性的S1 / GFP配位。两条肌肉中的杠杆臂显示了一种相对于纤维对称轴更好的球形极性方向和广泛分布的方位角方向。心肌肌球蛋白从纤维轴径向移开。探针的刚性暗示PAGFP标签可靠地指示了原位和体内的跨桥方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号